Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.1.3
Soustrayez des deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Simplifiez chaque terme.
Étape 1.2.3.1.1
Placez le signe moins devant la fraction.
Étape 1.2.3.1.2
Annulez le facteur commun à et .
Étape 1.2.3.1.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2
Annulez les facteurs communs.
Étape 1.2.3.1.2.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2.2
Annulez le facteur commun.
Étape 1.2.3.1.2.2.3
Réécrivez l’expression.
Étape 1.2.3.1.3
Placez le signe moins devant la fraction.
Étape 1.2.3.1.4
Annulez le facteur commun à et .
Étape 1.2.3.1.4.1
Factorisez à partir de .
Étape 1.2.3.1.4.2
Annulez les facteurs communs.
Étape 1.2.3.1.4.2.1
Factorisez à partir de .
Étape 1.2.3.1.4.2.2
Annulez le facteur commun.
Étape 1.2.3.1.4.2.3
Réécrivez l’expression.
Étape 1.2.3.1.5
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Réécrivez l’équation en forme de sommet.
Étape 2.1.1
Complétez le carré pour .
Étape 2.1.1.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 2.1.1.2
Étudiez la forme du sommet d’une parabole.
Étape 2.1.1.3
Déterminez la valeur de en utilisant la formule .
Étape 2.1.1.3.1
Remplacez les valeurs de et dans la formule .
Étape 2.1.1.3.2
Simplifiez le côté droit.
Étape 2.1.1.3.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.1.1.3.2.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.1.3.2.3
Associez et .
Étape 2.1.1.3.2.4
Annulez le facteur commun à et .
Étape 2.1.1.3.2.4.1
Factorisez à partir de .
Étape 2.1.1.3.2.4.2
Annulez les facteurs communs.
Étape 2.1.1.3.2.4.2.1
Factorisez à partir de .
Étape 2.1.1.3.2.4.2.2
Annulez le facteur commun.
Étape 2.1.1.3.2.4.2.3
Réécrivez l’expression.
Étape 2.1.1.3.2.5
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.1.3.2.6
Multipliez par .
Étape 2.1.1.3.2.7
Annulez le facteur commun de .
Étape 2.1.1.3.2.7.1
Factorisez à partir de .
Étape 2.1.1.3.2.7.2
Annulez le facteur commun.
Étape 2.1.1.3.2.7.3
Réécrivez l’expression.
Étape 2.1.1.4
Déterminez la valeur de en utilisant la formule .
Étape 2.1.1.4.1
Remplacez les valeurs de , et dans la formule .
Étape 2.1.1.4.2
Simplifiez le côté droit.
Étape 2.1.1.4.2.1
Simplifiez chaque terme.
Étape 2.1.1.4.2.1.1
Simplifiez le numérateur.
Étape 2.1.1.4.2.1.1.1
Appliquez la règle de produit à .
Étape 2.1.1.4.2.1.1.2
Élevez à la puissance .
Étape 2.1.1.4.2.1.1.3
Appliquez la règle de produit à .
Étape 2.1.1.4.2.1.1.4
Un à n’importe quelle puissance est égal à un.
Étape 2.1.1.4.2.1.1.5
Élevez à la puissance .
Étape 2.1.1.4.2.1.1.6
Multipliez par .
Étape 2.1.1.4.2.1.2
Simplifiez le dénominateur.
Étape 2.1.1.4.2.1.2.1
Multipliez par .
Étape 2.1.1.4.2.1.2.2
Associez et .
Étape 2.1.1.4.2.1.3
Réduisez l’expression en annulant les facteurs communs.
Étape 2.1.1.4.2.1.3.1
Annulez le facteur commun à et .
Étape 2.1.1.4.2.1.3.1.1
Factorisez à partir de .
Étape 2.1.1.4.2.1.3.1.2
Annulez les facteurs communs.
Étape 2.1.1.4.2.1.3.1.2.1
Factorisez à partir de .
Étape 2.1.1.4.2.1.3.1.2.2
Annulez le facteur commun.
Étape 2.1.1.4.2.1.3.1.2.3
Réécrivez l’expression.
Étape 2.1.1.4.2.1.3.2
Placez le signe moins devant la fraction.
Étape 2.1.1.4.2.1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.1.4.2.1.5
Multipliez par .
Étape 2.1.1.4.2.1.6
Associez et .
Étape 2.1.1.4.2.1.7
Placez le signe moins devant la fraction.
Étape 2.1.1.4.2.1.8
Multipliez .
Étape 2.1.1.4.2.1.8.1
Multipliez par .
Étape 2.1.1.4.2.1.8.2
Multipliez par .
Étape 2.1.1.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.1.1.4.2.3
Additionnez et .
Étape 2.1.1.4.2.4
Divisez par .
Étape 2.1.1.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 2.1.2
Définissez égal au nouveau côté droit.
Étape 2.2
Utilisez la forme du sommet, , pour déterminer les valeurs de , et .
Étape 2.3
Comme la valeur de est négative, la parabole ouvre vers le bas.
ouvre vers le bas
Étape 2.4
Déterminez le sommet .
Étape 2.5
Déterminez , la distance du sommet au foyer.
Étape 2.5.1
Déterminez la distance du sommet à un foyer de la parabole en utilisant la formule suivante.
Étape 2.5.2
Remplacez la valeur de dans la fonction.
Étape 2.5.3
Simplifiez
Étape 2.5.3.1
Annulez le facteur commun à et .
Étape 2.5.3.1.1
Réécrivez comme .
Étape 2.5.3.1.2
Placez le signe moins devant la fraction.
Étape 2.5.3.2
Associez et .
Étape 2.5.3.3
Annulez le facteur commun à et .
Étape 2.5.3.3.1
Factorisez à partir de .
Étape 2.5.3.3.2
Annulez les facteurs communs.
Étape 2.5.3.3.2.1
Factorisez à partir de .
Étape 2.5.3.3.2.2
Annulez le facteur commun.
Étape 2.5.3.3.2.3
Réécrivez l’expression.
Étape 2.5.3.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.5.3.5
Multipliez .
Étape 2.5.3.5.1
Multipliez par .
Étape 2.5.3.5.2
Multipliez par .
Étape 2.6
Déterminez le foyer.
Étape 2.6.1
Le foyer d’une parabole peut être trouvé en ajoutant à la coordonnée y si la parabole ouvre vers le haut ou vers le bas.
Étape 2.6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 2.7
Déterminez l’axe de symétrie en trouvant la droite qui passe par le sommet et le foyer.
Étape 2.8
Déterminez la directrice.
Étape 2.8.1
La directrice d’une parabole est la droite horizontale déterminée en soustrayant de la coordonnée y du sommet si la parabole ouvre vers le haut ou vers le bas.
Étape 2.8.2
Remplacez les valeurs connues de et dans la formule et simplifiez.
Étape 2.9
Utilisez les propriétés de la parabole pour analyser la parabole et la représenter sous forme graphique.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Déterminez le dénominateur commun.
Étape 3.2.1.1
Multipliez par .
Étape 3.2.1.2
Multipliez par .
Étape 3.2.1.3
Multipliez par .
Étape 3.2.1.4
Multipliez par .
Étape 3.2.1.5
Multipliez par .
Étape 3.2.1.6
Réorganisez les facteurs de .
Étape 3.2.1.7
Multipliez par .
Étape 3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.3
Simplifiez chaque terme.
Étape 3.2.3.1
Élevez à la puissance .
Étape 3.2.3.2
Multipliez par .
Étape 3.2.3.3
Multipliez par .
Étape 3.2.3.4
Multipliez par .
Étape 3.2.4
Simplifiez l’expression.
Étape 3.2.4.1
Additionnez et .
Étape 3.2.4.2
Soustrayez de .
Étape 3.2.4.3
Placez le signe moins devant la fraction.
Étape 3.2.5
La réponse finale est .
Étape 3.3
La valeur sur est .
Étape 3.4
Remplacez la variable par dans l’expression.
Étape 3.5
Simplifiez le résultat.
Étape 3.5.1
Déterminez le dénominateur commun.
Étape 3.5.1.1
Multipliez par .
Étape 3.5.1.2
Multipliez par .
Étape 3.5.1.3
Multipliez par .
Étape 3.5.1.4
Multipliez par .
Étape 3.5.1.5
Multipliez par .
Étape 3.5.1.6
Réorganisez les facteurs de .
Étape 3.5.1.7
Multipliez par .
Étape 3.5.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.5.3
Simplifiez chaque terme.
Étape 3.5.3.1
Élevez à la puissance .
Étape 3.5.3.2
Multipliez par .
Étape 3.5.3.3
Multipliez par .
Étape 3.5.3.4
Multipliez par .
Étape 3.5.4
Réduisez l’expression en annulant les facteurs communs.
Étape 3.5.4.1
Additionnez et .
Étape 3.5.4.2
Soustrayez de .
Étape 3.5.4.3
Annulez le facteur commun à et .
Étape 3.5.4.3.1
Factorisez à partir de .
Étape 3.5.4.3.2
Annulez les facteurs communs.
Étape 3.5.4.3.2.1
Factorisez à partir de .
Étape 3.5.4.3.2.2
Annulez le facteur commun.
Étape 3.5.4.3.2.3
Réécrivez l’expression.
Étape 3.5.4.4
Placez le signe moins devant la fraction.
Étape 3.5.5
La réponse finale est .
Étape 3.6
La valeur sur est .
Étape 3.7
Remplacez la variable par dans l’expression.
Étape 3.8
Simplifiez le résultat.
Étape 3.8.1
Déterminez le dénominateur commun.
Étape 3.8.1.1
Multipliez par .
Étape 3.8.1.2
Multipliez par .
Étape 3.8.1.3
Multipliez par .
Étape 3.8.1.4
Multipliez par .
Étape 3.8.1.5
Multipliez par .
Étape 3.8.1.6
Réorganisez les facteurs de .
Étape 3.8.1.7
Multipliez par .
Étape 3.8.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.8.3
Simplifiez chaque terme.
Étape 3.8.3.1
Élevez à la puissance .
Étape 3.8.3.2
Multipliez par .
Étape 3.8.3.3
Multipliez par .
Étape 3.8.3.4
Multipliez par .
Étape 3.8.4
Simplifiez l’expression.
Étape 3.8.4.1
Additionnez et .
Étape 3.8.4.2
Soustrayez de .
Étape 3.8.4.3
Placez le signe moins devant la fraction.
Étape 3.8.5
La réponse finale est .
Étape 3.9
La valeur sur est .
Étape 3.10
Remplacez la variable par dans l’expression.
Étape 3.11
Simplifiez le résultat.
Étape 3.11.1
Déterminez le dénominateur commun.
Étape 3.11.1.1
Multipliez par .
Étape 3.11.1.2
Multipliez par .
Étape 3.11.1.3
Multipliez par .
Étape 3.11.1.4
Multipliez par .
Étape 3.11.1.5
Multipliez par .
Étape 3.11.1.6
Réorganisez les facteurs de .
Étape 3.11.1.7
Multipliez par .
Étape 3.11.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.11.3
Simplifiez chaque terme.
Étape 3.11.3.1
Multipliez par en additionnant les exposants.
Étape 3.11.3.1.1
Multipliez par .
Étape 3.11.3.1.1.1
Élevez à la puissance .
Étape 3.11.3.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.11.3.1.2
Additionnez et .
Étape 3.11.3.2
Élevez à la puissance .
Étape 3.11.3.3
Multipliez par .
Étape 3.11.3.4
Multipliez par .
Étape 3.11.4
Réduisez l’expression en annulant les facteurs communs.
Étape 3.11.4.1
Additionnez et .
Étape 3.11.4.2
Soustrayez de .
Étape 3.11.4.3
Annulez le facteur commun à et .
Étape 3.11.4.3.1
Factorisez à partir de .
Étape 3.11.4.3.2
Annulez les facteurs communs.
Étape 3.11.4.3.2.1
Factorisez à partir de .
Étape 3.11.4.3.2.2
Annulez le facteur commun.
Étape 3.11.4.3.2.3
Réécrivez l’expression.
Étape 3.11.4.4
Placez le signe moins devant la fraction.
Étape 3.11.5
La réponse finale est .
Étape 3.12
La valeur sur est .
Étape 3.13
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Étape 4
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 5