Pré-calcul Exemples

Resolva o Sistema de @WORD x^2+y^2=100 , 8x-6y=0
,
Étape 1
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1.1
Factorisez à partir de .
Étape 1.2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2
Annulez le facteur commun.
Étape 1.2.3.1.2.3
Réécrivez l’expression.
Étape 2
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1.1
Appliquez la règle de produit à .
Étape 2.2.1.1.1.2
Appliquez la règle de produit à .
Étape 2.2.1.1.2
Élevez à la puissance .
Étape 2.2.1.1.3
Élevez à la puissance .
Étape 2.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.1.3
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.3.1
Associez et .
Étape 2.2.1.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.1.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.4.1
Déplacez à gauche de .
Étape 2.2.1.4.2
Additionnez et .
Étape 3
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez.
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.3.1
Annulez le facteur commun.
Étape 3.2.1.1.3.2
Divisez par .
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1.1
Factorisez à partir de .
Étape 3.2.2.1.1.2
Annulez le facteur commun.
Étape 3.2.2.1.1.3
Réécrivez l’expression.
Étape 3.2.2.1.2
Multipliez par .
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Factorisez à partir de .
Étape 4.2.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.2.1
Factorisez à partir de .
Étape 4.2.1.1.2.2
Annulez le facteur commun.
Étape 4.2.1.1.2.3
Réécrivez l’expression.
Étape 4.2.1.1.2.4
Divisez par .
Étape 4.2.1.2
Multipliez par .
Étape 5
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Factorisez à partir de .
Étape 5.2.1.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.2.1
Factorisez à partir de .
Étape 5.2.1.1.2.2
Annulez le facteur commun.
Étape 5.2.1.1.2.3
Réécrivez l’expression.
Étape 5.2.1.1.2.4
Divisez par .
Étape 5.2.1.2
Multipliez par .
Étape 6
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 8