Entrer un problème...
Pré-calcul Exemples
,
Étape 1
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Annulez le facteur commun à et .
Étape 1.2.3.1.1
Factorisez à partir de .
Étape 1.2.3.1.2
Annulez les facteurs communs.
Étape 1.2.3.1.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2
Annulez le facteur commun.
Étape 1.2.3.1.2.3
Réécrivez l’expression.
Étape 2
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Simplifiez chaque terme.
Étape 2.2.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 2.2.1.1.1.1
Appliquez la règle de produit à .
Étape 2.2.1.1.1.2
Appliquez la règle de produit à .
Étape 2.2.1.1.2
Élevez à la puissance .
Étape 2.2.1.1.3
Élevez à la puissance .
Étape 2.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2.1.3
Simplifiez les termes.
Étape 2.2.1.3.1
Associez et .
Étape 2.2.1.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.2.1.4
Simplifiez le numérateur.
Étape 2.2.1.4.1
Déplacez à gauche de .
Étape 2.2.1.4.2
Additionnez et .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez.
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.1.1.3
Annulez le facteur commun de .
Étape 3.2.1.1.3.1
Annulez le facteur commun.
Étape 3.2.1.1.3.2
Divisez par .
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Annulez le facteur commun de .
Étape 3.2.2.1.1.1
Factorisez à partir de .
Étape 3.2.2.1.1.2
Annulez le facteur commun.
Étape 3.2.2.1.1.3
Réécrivez l’expression.
Étape 3.2.2.1.2
Multipliez par .
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Simplifiez .
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Annulez le facteur commun à et .
Étape 4.2.1.1.1
Factorisez à partir de .
Étape 4.2.1.1.2
Annulez les facteurs communs.
Étape 4.2.1.1.2.1
Factorisez à partir de .
Étape 4.2.1.1.2.2
Annulez le facteur commun.
Étape 4.2.1.1.2.3
Réécrivez l’expression.
Étape 4.2.1.1.2.4
Divisez par .
Étape 4.2.1.2
Multipliez par .
Étape 5
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Étape 5.2.1
Simplifiez .
Étape 5.2.1.1
Annulez le facteur commun à et .
Étape 5.2.1.1.1
Factorisez à partir de .
Étape 5.2.1.1.2
Annulez les facteurs communs.
Étape 5.2.1.1.2.1
Factorisez à partir de .
Étape 5.2.1.1.2.2
Annulez le facteur commun.
Étape 5.2.1.1.2.3
Réécrivez l’expression.
Étape 5.2.1.1.2.4
Divisez par .
Étape 5.2.1.2
Multipliez par .
Étape 6
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 8