Pré-calcul Exemples

Trouver le domaine h(x)=( racine carrée de 4-x)/((x+1)(x^2+1))
Étape 1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’inégalité.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.2.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Divisez par .
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez égal à .
Étape 4.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.3.2.3
Réécrivez comme .
Étape 4.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 6