Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 2
Étape 2.1
Convertissez l’inégalité en une équation.
Étape 2.2
Factorisez le côté gauche de l’équation.
Étape 2.2.1
Factorisez à partir de .
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Factorisez à partir de .
Étape 2.2.1.3
Factorisez à partir de .
Étape 2.2.2
Réécrivez comme .
Étape 2.2.3
Factorisez.
Étape 2.2.3.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.2.3.2
Supprimez les parenthèses inutiles.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.4.2.2
Simplifiez .
Étape 2.4.2.2.1
Réécrivez comme .
Étape 2.4.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.4.2.2.3
Plus ou moins est .
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Ajoutez aux deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2.8
Utilisez chaque racine pour créer des intervalles de test.
Étape 2.9
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Étape 2.9.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 2.9.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.9.1.2
Remplacez par dans l’inégalité d’origine.
Étape 2.9.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 2.9.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 2.9.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.9.2.2
Remplacez par dans l’inégalité d’origine.
Étape 2.9.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 2.9.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 2.9.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.9.3.2
Remplacez par dans l’inégalité d’origine.
Étape 2.9.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 2.9.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 2.9.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.9.4.2
Remplacez par dans l’inégalité d’origine.
Étape 2.9.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 2.9.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Faux
Vrai
Vrai
Faux
Faux
Vrai
Étape 2.10
La solution se compose de tous les intervalles vrais.
ou ou
Étape 2.11
Associez les intervalles.
Étape 3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 4
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 5
Déterminez le domaine et la plage.
Domaine :
Plage :
Étape 6