Pré-calcul Exemples

Résoudre en factorisant sec(x-2)^2=tan(x)^2
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Appliquez la propriété distributive.
Étape 3.1.2
Appliquez la propriété distributive.
Étape 3.1.3
Appliquez la propriété distributive.
Étape 3.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Réorganisez les facteurs dans les termes et .
Étape 3.2.1.2
Additionnez et .
Étape 3.2.1.3
Additionnez et .
Étape 3.2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Élevez à la puissance .
Étape 3.2.2.1.2
Élevez à la puissance .
Étape 3.2.2.1.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.2.1.4
Additionnez et .
Étape 3.2.2.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.3.1
Élevez à la puissance .
Étape 3.2.2.3.2
Élevez à la puissance .
Étape 3.2.2.3.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.2.3.4
Additionnez et .
Étape 4
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
, pour tout entier
Étape 5