Pré-calcul Exemples

Resolva para x logarithme de racine carrée de x^3-9=2
Étape 1
Utilisez pour réécrire comme .
Étape 2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 3.3
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1.1.2.1
Annulez le facteur commun.
Étape 3.3.1.1.1.2.2
Réécrivez l’expression.
Étape 3.3.1.1.2
Simplifiez
Étape 3.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2.1.1.2
Multipliez par .
Étape 3.3.2.1.2
Élevez à la puissance .
Étape 3.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1.1
Ajoutez aux deux côtés de l’équation.
Étape 3.4.1.2
Additionnez et .
Étape 3.4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :