Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Utilisez la propriété du quotient des logarithmes, .
Étape 1.2
Factorisez à partir de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , est équivalent à .
Étape 3
Multipliez en croix pour retirer la fraction.
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Multipliez par .
Étape 5
Étape 5.1
Soustrayez des deux côtés de l’équation.
Étape 5.2
Simplifiez chaque terme.
Étape 5.2.1
Appliquez la propriété distributive.
Étape 5.2.2
Multipliez par .
Étape 5.2.3
Déplacez à gauche de .
Étape 5.3
Soustrayez de .
Étape 6
Étape 6.1
Factorisez à partir de .
Étape 6.2
Factorisez à partir de .
Étape 6.3
Factorisez à partir de .
Étape 7
Étape 7.1
Simplifiez en multipliant.
Étape 7.1.1
Appliquez la propriété distributive.
Étape 7.1.2
Simplifiez l’expression.
Étape 7.1.2.1
Multipliez par .
Étape 7.1.2.2
Déplacez à gauche de .
Étape 7.2
Réécrivez comme .
Étape 8
Soustrayez des deux côtés de l’équation.
Étape 9
Étape 9.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 9.2
Écrivez la forme factorisée avec ces entiers.
Étape 10
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 11
Étape 11.1
Définissez égal à .
Étape 11.2
Ajoutez aux deux côtés de l’équation.
Étape 12
Étape 12.1
Définissez égal à .
Étape 12.2
Soustrayez des deux côtés de l’équation.
Étape 13
La solution finale est l’ensemble des valeurs qui rendent vraie.