Pré-calcul Exemples

Simplifier (x^2-2x-35)/(2x^3-3x^2)*(4x^3-9x)/(7x-49)
Étape 1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.2
Écrivez la forme factorisée avec ces entiers.
Étape 2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez à partir de .
Étape 2.2
Factorisez à partir de .
Étape 2.3
Factorisez à partir de .
Étape 3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.2
Réécrivez comme .
Étape 3.3
Réécrivez comme .
Étape 3.4
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 4
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.2
Associez.
Étape 4.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Annulez le facteur commun.
Étape 4.3.2
Réécrivez l’expression.
Étape 4.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Factorisez à partir de .
Étape 4.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.2.1
Factorisez à partir de .
Étape 4.4.2.2
Annulez le facteur commun.
Étape 4.4.2.3
Réécrivez l’expression.
Étape 4.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Annulez le facteur commun.
Étape 4.5.2
Réécrivez l’expression.
Étape 4.6
Déplacez à gauche de .