Entrer un problème...
Pré-calcul Exemples
Étape 1
Convertissez l’inégalité en une égalité.
Étape 2
Étape 2.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 2.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.3
Résolvez .
Étape 2.3.1
Réécrivez l’équation comme .
Étape 2.3.2
Soustrayez des deux côtés de l’équation.
Étape 2.3.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.3.1
Divisez chaque terme dans par .
Étape 2.3.3.2
Simplifiez le côté gauche.
Étape 2.3.3.2.1
Annulez le facteur commun de .
Étape 2.3.3.2.1.1
Annulez le facteur commun.
Étape 2.3.3.2.1.2
Divisez par .
Étape 2.3.3.3
Simplifiez le côté droit.
Étape 2.3.3.3.1
Simplifiez chaque terme.
Étape 2.3.3.3.1.1
Placez le signe moins devant la fraction.
Étape 2.3.3.3.1.2
La division de deux valeurs négatives produit une valeur positive.
Étape 3
Étape 3.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.2
Résolvez .
Étape 3.2.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.2.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 3.2.2.2
Simplifiez le côté gauche.
Étape 3.2.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.2.1.2
Divisez par .
Étape 3.2.2.3
Simplifiez le côté droit.
Étape 3.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 4
La solution se compose de tous les intervalles vrais.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 6