Pré-calcul Exemples

Trouver l'amplitude, la période et le déphasage y=4cos(x/2)-5
Étape 1
Utilisez la forme afin de déterminer les variables pour déterminer l’amplitude, la période, le déphasage et le décalage vertical.
Étape 2
Déterminez l’amplitude .
Amplitude :
Étape 3
Déterminez la période en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
La période de la fonction peut être calculée en utilisant .
Étape 3.1.2
Remplacez par dans la formule pour la période.
Étape 3.1.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 3.1.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.1.5
Multipliez par .
Étape 3.2
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
La période de la fonction peut être calculée en utilisant .
Étape 3.2.2
Remplacez par dans la formule pour la période.
Étape 3.2.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 3.2.4
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3.2.5
Multipliez par .
Étape 3.3
La période d’addition/soustraction des fonctions trigonométriques est le maximum des différentes périodes.
Étape 4
Déterminez le déphasage en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Le déphasage de la fonction peut être calculé à partir de .
Déphasage :
Étape 4.2
Remplacez les valeurs de et dans l’équation pour le déphasage.
Déphasage :
Étape 4.3
Multipliez le numérateur par la réciproque du dénominateur.
Déphasage :
Étape 4.4
Multipliez par .
Déphasage :
Déphasage :
Étape 5
Indiquez les propriétés de la fonction trigonométrique.
Amplitude :
Période :
Déphasage : Aucune
Décalage vertical :
Étape 6