Entrer un problème...
Pré-calcul Exemples
Étape 1
Étape 1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.1.2
Ajoutez aux deux côtés de l’équation.
Étape 1.1.3
Soustrayez des deux côtés de l’équation.
Étape 1.2
Complétez le carré pour .
Étape 1.2.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.2.2
Étudiez la forme du sommet d’une parabole.
Étape 1.2.3
Déterminez la valeur de en utilisant la formule .
Étape 1.2.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.2.3.2
Simplifiez le côté droit.
Étape 1.2.3.2.1
Annulez le facteur commun à et .
Étape 1.2.3.2.1.1
Factorisez à partir de .
Étape 1.2.3.2.1.2
Annulez les facteurs communs.
Étape 1.2.3.2.1.2.1
Factorisez à partir de .
Étape 1.2.3.2.1.2.2
Annulez le facteur commun.
Étape 1.2.3.2.1.2.3
Réécrivez l’expression.
Étape 1.2.3.2.2
Annulez le facteur commun de .
Étape 1.2.3.2.2.1
Annulez le facteur commun.
Étape 1.2.3.2.2.2
Réécrivez l’expression.
Étape 1.2.4
Déterminez la valeur de en utilisant la formule .
Étape 1.2.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.2.4.2
Simplifiez le côté droit.
Étape 1.2.4.2.1
Simplifiez chaque terme.
Étape 1.2.4.2.1.1
Annulez le facteur commun à et .
Étape 1.2.4.2.1.1.1
Factorisez à partir de .
Étape 1.2.4.2.1.1.2
Annulez les facteurs communs.
Étape 1.2.4.2.1.1.2.1
Factorisez à partir de .
Étape 1.2.4.2.1.1.2.2
Annulez le facteur commun.
Étape 1.2.4.2.1.1.2.3
Réécrivez l’expression.
Étape 1.2.4.2.1.2
Annulez le facteur commun à et .
Étape 1.2.4.2.1.2.1
Factorisez à partir de .
Étape 1.2.4.2.1.2.2
Annulez les facteurs communs.
Étape 1.2.4.2.1.2.2.1
Factorisez à partir de .
Étape 1.2.4.2.1.2.2.2
Annulez le facteur commun.
Étape 1.2.4.2.1.2.2.3
Réécrivez l’expression.
Étape 1.2.4.2.1.2.2.4
Divisez par .
Étape 1.2.4.2.1.3
Multipliez par .
Étape 1.2.4.2.2
Soustrayez de .
Étape 1.2.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.3
Définissez égal au nouveau côté droit.
Étape 2
Utilisez la forme du sommet, , pour déterminer les valeurs de , et .
Étape 3
Comme la valeur de est positive, la parabole ouvre vers la droite.
ouvre vers la droite
Étape 4
Déterminez le sommet .
Étape 5
Étape 5.1
Déterminez la distance du sommet à un foyer de la parabole en utilisant la formule suivante.
Étape 5.2
Remplacez la valeur de dans la fonction.
Étape 5.3
Multipliez par .
Étape 6
Étape 6.1
Le foyer d’une parabole peut être trouvé en ajoutant à la coordonnée x si la parabole ouvre vers la gauche ou vers la droite.
Étape 6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 7
Déterminez l’axe de symétrie en trouvant la droite qui passe par le sommet et le foyer.
Étape 8
Étape 8.1
La directrice d’une parabole est la droite verticale déterminée en soustrayant de la coordonnée x du sommet si la parabole ouvre vers la gauche ou vers la droite.
Étape 8.2
Remplacez les valeurs connues de et dans la formule et simplifiez.
Étape 9
Utilisez les propriétés de la parabole pour analyser la parabole et la représenter sous forme graphique.
Direction : ouvre vers la droite
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 10