Entrer un problème...
Pré-calcul Exemples
Étape 1
Remplacez le par d’après l’identité .
Étape 2
Remettez le polynôme dans l’ordre.
Étape 3
Remplacez par .
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Soustrayez de .
Étape 6
Étape 6.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.2
Écrivez la forme factorisée avec ces entiers.
Étape 7
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 8
Étape 8.1
Définissez égal à .
Étape 8.2
Ajoutez aux deux côtés de l’équation.
Étape 9
Étape 9.1
Définissez égal à .
Étape 9.2
Soustrayez des deux côtés de l’équation.
Étape 10
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 11
Remplacez par .
Étape 12
Définissez chacune des solutions à résoudre pour .
Étape 13
Étape 13.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 13.2
Simplifiez le côté droit.
Étape 13.2.1
Évaluez .
Étape 13.3
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 13.4
Résolvez .
Étape 13.4.1
Supprimez les parenthèses.
Étape 13.4.2
Supprimez les parenthèses.
Étape 13.4.3
Additionnez et .
Étape 13.5
Déterminez la période de .
Étape 13.5.1
La période de la fonction peut être calculée en utilisant .
Étape 13.5.2
Remplacez par dans la formule pour la période.
Étape 13.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 13.5.4
Divisez par .
Étape 13.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 14
Étape 14.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 14.2
Simplifiez le côté droit.
Étape 14.2.1
La valeur exacte de est .
Étape 14.3
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 14.4
Simplifiez l’expression pour déterminer la deuxième solution.
Étape 14.4.1
Ajoutez à .
Étape 14.4.2
L’angle résultant de est positif et coterminal avec .
Étape 14.5
Déterminez la période de .
Étape 14.5.1
La période de la fonction peut être calculée en utilisant .
Étape 14.5.2
Remplacez par dans la formule pour la période.
Étape 14.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 14.5.4
Divisez par .
Étape 14.6
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Étape 14.6.1
Ajoutez à pour déterminer l’angle positif.
Étape 14.6.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 14.6.3
Associez les fractions.
Étape 14.6.3.1
Associez et .
Étape 14.6.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 14.6.4
Simplifiez le numérateur.
Étape 14.6.4.1
Déplacez à gauche de .
Étape 14.6.4.2
Soustrayez de .
Étape 14.6.5
Indiquez les nouveaux angles.
Étape 14.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 15
Indiquez toutes les solutions.
, pour tout entier
Étape 16
Étape 16.1
Consolidez et en .
, pour tout entier
Étape 16.2
Consolidez et en .
, pour tout entier
, pour tout entier