Pré-calcul Exemples

Resolva para x 2 racine carrée de x+1- racine carrée de 2x+3=1
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 3
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Appliquez la règle de produit à .
Étape 3.2.1.2
Élevez à la puissance .
Étape 3.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.2.1
Annulez le facteur commun.
Étape 3.2.1.3.2.2
Réécrivez l’expression.
Étape 3.2.1.4
Simplifiez
Étape 3.2.1.5
Appliquez la propriété distributive.
Étape 3.2.1.6
Multipliez par .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Réécrivez comme .
Étape 3.3.1.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.2.1
Appliquez la propriété distributive.
Étape 3.3.1.2.2
Appliquez la propriété distributive.
Étape 3.3.1.2.3
Appliquez la propriété distributive.
Étape 3.3.1.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1.1
Multipliez par .
Étape 3.3.1.3.1.2
Multipliez par .
Étape 3.3.1.3.1.3
Multipliez par .
Étape 3.3.1.3.1.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1.4.1
Élevez à la puissance .
Étape 3.3.1.3.1.4.2
Élevez à la puissance .
Étape 3.3.1.3.1.4.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.3.1.3.1.4.4
Additionnez et .
Étape 3.3.1.3.1.5
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1.5.1
Utilisez pour réécrire comme .
Étape 3.3.1.3.1.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.1.3.1.5.3
Associez et .
Étape 3.3.1.3.1.5.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1.5.4.1
Annulez le facteur commun.
Étape 3.3.1.3.1.5.4.2
Réécrivez l’expression.
Étape 3.3.1.3.1.5.5
Simplifiez
Étape 3.3.1.3.2
Additionnez et .
Étape 3.3.1.3.3
Additionnez et .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Soustrayez des deux côtés de l’équation.
Étape 4.2.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Soustrayez de .
Étape 4.2.3.2
Additionnez et .
Étape 4.2.4
Soustrayez de .
Étape 5
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 6
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Utilisez pour réécrire comme .
Étape 6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Appliquez la règle de produit à .
Étape 6.2.1.2
Élevez à la puissance .
Étape 6.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.3.2.1
Annulez le facteur commun.
Étape 6.2.1.3.2.2
Réécrivez l’expression.
Étape 6.2.1.4
Simplifiez
Étape 6.2.1.5
Appliquez la propriété distributive.
Étape 6.2.1.6
Multipliez.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.6.1
Multipliez par .
Étape 6.2.1.6.2
Multipliez par .
Étape 6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1.1
Appliquez la règle de produit à .
Étape 6.3.1.2
Élevez à la puissance .
Étape 7
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Soustrayez des deux côtés de l’équation.
Étape 7.2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Remettez l’expression dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1.1
Déplacez .
Étape 7.2.1.1.2
Remettez dans l’ordre et .
Étape 7.2.1.2
Factorisez à partir de .
Étape 7.2.1.3
Factorisez à partir de .
Étape 7.2.1.4
Factorisez à partir de .
Étape 7.2.1.5
Factorisez à partir de .
Étape 7.2.1.6
Factorisez à partir de .
Étape 7.2.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.2.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 7.2.2.2
Supprimez les parenthèses inutiles.
Étape 7.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Définissez égal à .
Étape 7.4.2
Ajoutez aux deux côtés de l’équation.
Étape 7.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Définissez égal à .
Étape 7.5.2
Soustrayez des deux côtés de l’équation.
Étape 7.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Excluez les solutions qui ne rendent pas vrai.