Pré-calcul Exemples

Résoudre en complétant le carré x^2=3/4x-1/8
Étape 1
Simplifiez l’équation dans une forme appropriée pour compléter le carré.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Associez et .
Étape 1.2
Soustrayez des deux côtés de l’équation.
Étape 2
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 3
Ajoutez le terme de chaque côté de l’équation.
Étape 4
Simplifiez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1.1
Appliquez la règle de produit à .
Étape 4.1.1.1.2
Appliquez la règle de produit à .
Étape 4.1.1.2
Élevez à la puissance .
Étape 4.1.1.3
Multipliez par .
Étape 4.1.1.4
Élevez à la puissance .
Étape 4.1.1.5
Élevez à la puissance .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.1.2
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Élevez à la puissance .
Étape 4.2.1.1.3
Multipliez par .
Étape 4.2.1.1.4
Élevez à la puissance .
Étape 4.2.1.1.5
Élevez à la puissance .
Étape 4.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.3.1
Multipliez par .
Étape 4.2.1.3.2
Multipliez par .
Étape 4.2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.5
Additionnez et .
Étape 5
Factorisez le carré trinomial parfait en .
Étape 6
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Réécrivez comme .
Étape 6.2.2
Toute racine de est .
Étape 6.2.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Réécrivez comme .
Étape 6.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.2.3
Additionnez et .
Étape 6.3.2.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.4.1
Factorisez à partir de .
Étape 6.3.2.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.4.2.1
Factorisez à partir de .
Étape 6.3.2.4.2.2
Annulez le facteur commun.
Étape 6.3.2.4.2.3
Réécrivez l’expression.
Étape 6.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.1
Ajoutez aux deux côtés de l’équation.
Étape 6.3.4.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.4.3
Additionnez et .
Étape 6.3.4.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.4.1
Factorisez à partir de .
Étape 6.3.4.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.4.4.2.1
Factorisez à partir de .
Étape 6.3.4.4.2.2
Annulez le facteur commun.
Étape 6.3.4.4.2.3
Réécrivez l’expression.
Étape 6.3.5
La solution complète est le résultat des parties positive et négative de la solution.