Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 2.2
Factorisez à l’aide de la méthode AC.
Étape 2.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2.7
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 2.8
Résolvez la première équation pour .
Étape 2.9
Résolvez l’équation pour .
Étape 2.9.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.9.2
Réécrivez comme .
Étape 2.9.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.9.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.9.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.9.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.10
Résolvez la deuxième équation pour .
Étape 2.11
Résolvez l’équation pour .
Étape 2.11.1
Supprimez les parenthèses.
Étape 2.11.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.11.3
Simplifiez .
Étape 2.11.3.1
Réécrivez comme .
Étape 2.11.3.2
Réécrivez comme .
Étape 2.11.3.3
Réécrivez comme .
Étape 2.11.3.4
Réécrivez comme .
Étape 2.11.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.11.3.6
Déplacez à gauche de .
Étape 2.11.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.11.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.11.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.11.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.12
La solution à est .
Étape 3