Pré-calcul Exemples

Trouver les racines/zéros en cherchant les racines rationnelles avec le lemme de Gauss 3x^4-10x^3-9x^2+40x-12
Étape 1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 3
Remplacez les racines possibles une par une dans le polynôme afin de déterminer les racines réelles. Simplifiez pour vérifier que la valeur est , ce qui signifie que c’est une racine.
Étape 4
Simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez par .
Étape 4.1.3
Élevez à la puissance .
Étape 4.1.4
Multipliez par .
Étape 4.1.5
Élevez à la puissance .
Étape 4.1.6
Multipliez par .
Étape 4.1.7
Multipliez par .
Étape 4.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez de .
Étape 4.2.2
Soustrayez de .
Étape 4.2.3
Additionnez et .
Étape 4.2.4
Soustrayez de .
Étape 5
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 6
Ensuite, déterminez les racines du polynôme restant. Le degré du polynôme a été réduit de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Placez les nombres qui représentent le diviseur et le dividende dans une configuration de type division.
  
Étape 6.2
Le premier nombre dans le dividende est placé à la première position de la zone de résultat (sous la droite horizontale).
  
Étape 6.3
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.4
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.5
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.6
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.7
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
  
Étape 6.8
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
  
Étape 6.9
Multipliez l’entrée la plus récente dans le résultat par le diviseur et placez le résultat de sous le terme suivant dans le dividende .
 
Étape 6.10
Ajoutez le produit de la multiplication et le nombre du dividende et placez le résultat à la position suivante sur la ligne de résultat.
 
Étape 6.11
Tous les nombres à l’exception du dernier deviennent les coefficients du polynôme quotient. La dernière valeur sur la ligne de résultat est le reste.
Étape 6.12
Simplifiez le polynôme quotient.
Étape 7
Résolvez l’équation pour déterminer toute racine restante.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Factorisez en utilisant le test des racines rationnelles.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.1
Si une fonction polynomiale a des coefficients entiers, chaque zéro rationnel aura la forme est un facteur de la constante et est un facteur du coefficient directeur.
Étape 7.1.1.2
Déterminez chaque combinaison de . Il s’agit des racines possibles de la fonction polynomiale.
Étape 7.1.1.3
Remplacez et simplifiez l’expression. Dans ce cas, l’expression est égale à donc est une racine du polynôme.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.3.1
Remplacez dans le polynôme.
Étape 7.1.1.3.2
Élevez à la puissance .
Étape 7.1.1.3.3
Multipliez par .
Étape 7.1.1.3.4
Élevez à la puissance .
Étape 7.1.1.3.5
Multipliez par .
Étape 7.1.1.3.6
Soustrayez de .
Étape 7.1.1.3.7
Multipliez par .
Étape 7.1.1.3.8
Soustrayez de .
Étape 7.1.1.3.9
Additionnez et .
Étape 7.1.1.4
Comme est une racine connue, divisez le polynôme par pour déterminer le polynôme quotient. Ce polynôme peut alors être utilisé pour déterminer les racines restantes.
Étape 7.1.1.5
Divisez par .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1.5.1
Définissez les polynômes à diviser. S’il n’y a pas de terme pour chaque exposant, insérez-en un avec une valeur de .
---+
Étape 7.1.1.5.2
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
---+
Étape 7.1.1.5.3
Multipliez le nouveau terme du quotient par le diviseur.
---+
+-
Étape 7.1.1.5.4
L’expression doit être soustraite du dividende, alors changez tous les signes dans
---+
-+
Étape 7.1.1.5.5
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
---+
-+
-
Étape 7.1.1.5.6
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
---+
-+
--
Étape 7.1.1.5.7
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
-
---+
-+
--
Étape 7.1.1.5.8
Multipliez le nouveau terme du quotient par le diviseur.
-
---+
-+
--
-+
Étape 7.1.1.5.9
L’expression doit être soustraite du dividende, alors changez tous les signes dans
-
---+
-+
--
+-
Étape 7.1.1.5.10
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
-
---+
-+
--
+-
-
Étape 7.1.1.5.11
Extrayez les termes suivants du dividende d’origine dans le dividende actuel.
-
---+
-+
--
+-
-+
Étape 7.1.1.5.12
Divisez le terme du plus haut degré dans le dividende par le terme du plus haut degré dans le diviseur .
--
---+
-+
--
+-
-+
Étape 7.1.1.5.13
Multipliez le nouveau terme du quotient par le diviseur.
--
---+
-+
--
+-
-+
-+
Étape 7.1.1.5.14
L’expression doit être soustraite du dividende, alors changez tous les signes dans
--
---+
-+
--
+-
-+
+-
Étape 7.1.1.5.15
Après avoir changé les signes, ajoutez le dernier dividende du polynôme multiplié pour déterminer le nouveau dividende.
--
---+
-+
--
+-
-+
+-
Étape 7.1.1.5.16
Comme le reste est , la réponse finale est le quotient.
Étape 7.1.1.6
Écrivez comme un ensemble de facteurs.
Étape 7.1.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.1.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 7.1.2.2
Supprimez les parenthèses inutiles.
Étape 7.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Définissez égal à .
Étape 7.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 7.3.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.1
Divisez chaque terme dans par .
Étape 7.3.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.3.2.2.2.1.1
Annulez le facteur commun.
Étape 7.3.2.2.2.1.2
Divisez par .
Étape 7.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Définissez égal à .
Étape 7.4.2
Ajoutez aux deux côtés de l’équation.
Étape 7.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 7.5.1
Définissez égal à .
Étape 7.5.2
Soustrayez des deux côtés de l’équation.
Étape 7.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Le polynôme peut être écrit comme un ensemble de facteurs linéaires.
Étape 9
Ce sont les racines (zéros) du polynôme .
Étape 10