Entrer un problème...
Pré-calcul Exemples
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Étape 3.3.2.1
Annulez le facteur commun de .
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Étape 3.3.3.1
Annulez le facteur commun à et .
Étape 3.3.3.1.1
Factorisez à partir de .
Étape 3.3.3.1.2
Annulez les facteurs communs.
Étape 3.3.3.1.2.1
Factorisez à partir de .
Étape 3.3.3.1.2.2
Annulez le facteur commun.
Étape 3.3.3.1.2.3
Réécrivez l’expression.
Étape 3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.5
Simplifiez .
Étape 3.5.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.5.2
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 3.5.2.1
Multipliez par .
Étape 3.5.2.2
Multipliez par .
Étape 3.5.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.5.4
Réécrivez comme .
Étape 3.5.5
Multipliez par .
Étape 3.5.6
Associez et simplifiez le dénominateur.
Étape 3.5.6.1
Multipliez par .
Étape 3.5.6.2
Élevez à la puissance .
Étape 3.5.6.3
Utilisez la règle de puissance pour associer des exposants.
Étape 3.5.6.4
Additionnez et .
Étape 3.5.6.5
Réécrivez comme .
Étape 3.5.6.5.1
Utilisez pour réécrire comme .
Étape 3.5.6.5.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.5.6.5.3
Associez et .
Étape 3.5.6.5.4
Annulez le facteur commun de .
Étape 3.5.6.5.4.1
Annulez le facteur commun.
Étape 3.5.6.5.4.2
Réécrivez l’expression.
Étape 3.5.6.5.5
Évaluez l’exposant.
Étape 3.5.7
Simplifiez le numérateur.
Étape 3.5.7.1
Réécrivez comme .
Étape 3.5.7.2
Élevez à la puissance .
Étape 3.5.8
Simplifiez en factorisant.
Étape 3.5.8.1
Associez en utilisant la règle de produit pour les radicaux.
Étape 3.5.8.2
Remettez les facteurs dans l’ordre dans .
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Simplifiez le numérateur.
Étape 5.2.3.1
Additionnez et .
Étape 5.2.3.2
Additionnez et .
Étape 5.2.3.3
Multipliez par .
Étape 5.2.3.4
Réécrivez comme .
Étape 5.2.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.2.4
Annulez le facteur commun de .
Étape 5.2.4.1
Annulez le facteur commun.
Étape 5.2.4.2
Divisez par .
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Simplifiez chaque terme.
Étape 5.3.3.1
Appliquez la règle de produit à .
Étape 5.3.3.2
Simplifiez le numérateur.
Étape 5.3.3.2.1
Réécrivez comme .
Étape 5.3.3.2.1.1
Utilisez pour réécrire comme .
Étape 5.3.3.2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.3.2.1.3
Associez et .
Étape 5.3.3.2.1.4
Annulez le facteur commun de .
Étape 5.3.3.2.1.4.1
Annulez le facteur commun.
Étape 5.3.3.2.1.4.2
Réécrivez l’expression.
Étape 5.3.3.2.1.5
Simplifiez
Étape 5.3.3.2.2
Appliquez la propriété distributive.
Étape 5.3.3.2.3
Multipliez par .
Étape 5.3.3.2.4
Factorisez à partir de .
Étape 5.3.3.2.4.1
Factorisez à partir de .
Étape 5.3.3.2.4.2
Factorisez à partir de .
Étape 5.3.3.2.4.3
Factorisez à partir de .
Étape 5.3.3.3
Élevez à la puissance .
Étape 5.3.3.4
Annulez le facteur commun de .
Étape 5.3.3.4.1
Factorisez à partir de .
Étape 5.3.3.4.2
Annulez le facteur commun.
Étape 5.3.3.4.3
Réécrivez l’expression.
Étape 5.3.3.5
Annulez le facteur commun de .
Étape 5.3.3.5.1
Annulez le facteur commun.
Étape 5.3.3.5.2
Divisez par .
Étape 5.3.4
Associez les termes opposés dans .
Étape 5.3.4.1
Soustrayez de .
Étape 5.3.4.2
Additionnez et .
Étape 5.4
Comme et , est l’inverse de .