Pré-calcul Exemples

Resolva para x 2sec(x)^2+tan(x)^2-3=0
Étape 1
Remplacez le par d’après l’identité .
Étape 2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Appliquez la propriété distributive.
Étape 2.2
Multipliez par .
Étape 3
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez de .
Étape 3.2
Additionnez et .
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Annulez le facteur commun.
Étape 5.2.1.2
Divisez par .
Étape 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 7
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Réécrivez comme .
Étape 7.2
Toute racine de est .
Étape 7.3
Multipliez par .
Étape 7.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.4.1
Multipliez par .
Étape 7.4.2
Élevez à la puissance .
Étape 7.4.3
Élevez à la puissance .
Étape 7.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 7.4.5
Additionnez et .
Étape 7.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.6.1
Utilisez pour réécrire comme .
Étape 7.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 7.4.6.3
Associez et .
Étape 7.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.4.6.4.1
Annulez le facteur commun.
Étape 7.4.6.4.2
Réécrivez l’expression.
Étape 7.4.6.5
Évaluez l’exposant.
Étape 8
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 8.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 8.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 9
Définissez chacune des solutions à résoudre pour .
Étape 10
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 10.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 10.2.1
La valeur exacte de est .
Étape 10.3
La fonction tangente est positive dans les premier et troisième quadrants. Pour déterminer la deuxième solution, ajoutez l’angle de référence de pour déterminer la solution dans le quatrième quadrant.
Étape 10.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 10.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 10.4.2
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 10.4.2.1
Associez et .
Étape 10.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 10.4.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.4.3.1
Déplacez à gauche de .
Étape 10.4.3.2
Additionnez et .
Étape 10.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 10.5.1
La période de la fonction peut être calculée en utilisant .
Étape 10.5.2
Remplacez par dans la formule pour la période.
Étape 10.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 10.5.4
Divisez par .
Étape 10.6
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 11
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Prenez la tangente inverse des deux côtés de l’équation pour extraire de l’intérieur de la tangente.
Étape 11.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
La valeur exacte de est .
Étape 11.3
La fonction tangente est négative dans les deuxième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 11.4
Simplifiez l’expression pour déterminer la deuxième solution.
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Ajoutez à .
Étape 11.4.2
L’angle résultant de est positif et coterminal avec .
Étape 11.5
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 11.5.1
La période de la fonction peut être calculée en utilisant .
Étape 11.5.2
Remplacez par dans la formule pour la période.
Étape 11.5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 11.5.4
Divisez par .
Étape 11.6
Ajoutez à chaque angle négatif pour obtenir des angles positifs.
Appuyez ici pour voir plus d’étapes...
Étape 11.6.1
Ajoutez à pour déterminer l’angle positif.
Étape 11.6.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 11.6.3
Associez les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 11.6.3.1
Associez et .
Étape 11.6.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 11.6.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.6.4.1
Déplacez à gauche de .
Étape 11.6.4.2
Soustrayez de .
Étape 11.6.5
Indiquez les nouveaux angles.
Étape 11.7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
, pour tout entier
Étape 12
Indiquez toutes les solutions.
, pour tout entier
Étape 13
Consolidez les solutions.
Appuyez ici pour voir plus d’étapes...
Étape 13.1
Consolidez et en .
, pour tout entier
Étape 13.2
Consolidez et en .
, pour tout entier
, pour tout entier