Entrer un problème...
Pré-calcul Exemples
Étape 1
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez .
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Additionnez et .
Étape 4.2
Multipliez par .
Étape 5
La réponse finale est la combinaison des deux solutions.
Étape 6
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 7
Résolvez la première équation pour .
Étape 8
Étape 8.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 8.2
La solution complète est le résultat des parties positive et négative de la solution.
Étape 8.2.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 8.2.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 8.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 9
Résolvez la deuxième équation pour .
Étape 10
Étape 10.1
Supprimez les parenthèses.
Étape 10.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 10.3
Simplifiez .
Étape 10.3.1
Réécrivez comme .
Étape 10.3.2
Réécrivez comme .
Étape 10.3.3
Réécrivez comme .
Étape 10.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 10.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 10.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 10.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 11
La solution à est .