Entrer un problème...
Pré-calcul Exemples
Étape 1
Étudiez la formule des quotients différentiels.
Étape 2
Étape 2.1
Évaluez la fonction sur .
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Étape 2.1.2.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 2.1.2.2
Associez et .
Étape 2.1.2.3
La réponse finale est .
Étape 2.2
Déterminez les composants de la définition.
Étape 3
Insérez les composants.
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.1.3.1
Multipliez par .
Étape 4.1.3.2
Multipliez par .
Étape 4.1.3.3
Réorganisez les facteurs de .
Étape 4.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.1.5
Simplifiez le numérateur.
Étape 4.1.5.1
Factorisez à partir de .
Étape 4.1.5.1.1
Factorisez à partir de .
Étape 4.1.5.1.2
Factorisez à partir de .
Étape 4.1.5.1.3
Factorisez à partir de .
Étape 4.1.5.2
Réécrivez comme .
Étape 4.1.5.3
Réécrivez comme .
Étape 4.1.5.4
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 4.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.3
Associez.
Étape 4.4
Simplifiez l’expression.
Étape 4.4.1
Multipliez par .
Étape 4.4.2
Remettez les facteurs dans l’ordre dans .
Étape 5