Pré-calcul Exemples

Trouver le taux de variation moyen f(x) = square root of x-x+1
Étape 1
Étudiez la formule des quotients différentiels.
Étape 2
Déterminez les composants de la définition.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Évaluez la fonction sur .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Supprimez les parenthèses.
Étape 2.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.3
La réponse finale est .
Étape 2.2
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Remettez dans l’ordre et .
Étape 2.2.2
Déplacez .
Étape 2.2.3
Remettez dans l’ordre et .
Étape 2.3
Déterminez les composants de la définition.
Étape 3
Insérez les composants.
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Appliquez la propriété distributive.
Étape 4.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1.1
Multipliez par .
Étape 4.1.2.1.2
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Additionnez et .
Étape 4.1.4
Additionnez et .
Étape 4.1.5
Soustrayez de .
Étape 4.1.6
Additionnez et .
Étape 4.2
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Factorisez à partir de .
Étape 4.2.2
Factorisez à partir de .
Étape 4.2.3
Factorisez à partir de .
Étape 4.2.4
Factorisez à partir de .
Étape 4.2.5
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Réécrivez comme .
Étape 4.2.5.2
Placez le signe moins devant la fraction.
Étape 5