Pré-calcul Exemples

Trouver le domaine f(x)=1/( racine carrée de x^2+x-20)
Étape 1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Convertissez l’inégalité en une équation.
Étape 2.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Ajoutez aux deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 2.7
Utilisez chaque racine pour créer des intervalles de test.
Étape 2.8
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.8.1.2
Remplacez par dans l’inégalité d’origine.
Étape 2.8.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 2.8.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.8.2.2
Remplacez par dans l’inégalité d’origine.
Étape 2.8.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 2.8.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 2.8.3.2
Remplacez par dans l’inégalité d’origine.
Étape 2.8.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 2.8.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 2.9
La solution se compose de tous les intervalles vrais.
ou
ou
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 4.2
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Utilisez pour réécrire comme .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1.2.1
Annulez le facteur commun.
Étape 4.2.2.1.1.2.2
Réécrivez l’expression.
Étape 4.2.2.1.2
Simplifiez
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
L’élévation de à toute puissance positive produit .
Étape 4.3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.3.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.3.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Définissez égal à .
Étape 4.3.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Définissez égal à .
Étape 4.3.4.2
Soustrayez des deux côtés de l’équation.
Étape 4.3.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 6