Entrer un problème...
Pré-calcul Exemples
; find
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Multipliez les deux côtés de l’équation par .
Étape 3.3
Simplifiez le côté gauche.
Étape 3.3.1
Annulez le facteur commun de .
Étape 3.3.1.1
Annulez le facteur commun.
Étape 3.3.1.2
Réécrivez l’expression.
Étape 3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
Associez et .
Étape 5.2.4
Réduisez l’expression en annulant les facteurs communs.
Étape 5.2.4.1
Réduisez l’expression en annulant les facteurs communs.
Étape 5.2.4.1.1
Annulez le facteur commun.
Étape 5.2.4.1.2
Réécrivez l’expression.
Étape 5.2.4.2
Divisez par .
Étape 5.2.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 5.3
Évaluez .
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Réécrivez comme .
Étape 5.3.3.1
Utilisez pour réécrire comme .
Étape 5.3.3.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 5.3.3.3
Associez et .
Étape 5.3.3.4
Annulez le facteur commun de .
Étape 5.3.3.4.1
Annulez le facteur commun.
Étape 5.3.3.4.2
Réécrivez l’expression.
Étape 5.3.3.5
Simplifiez
Étape 5.3.4
Annulez le facteur commun de .
Étape 5.3.4.1
Annulez le facteur commun.
Étape 5.3.4.2
Divisez par .
Étape 5.4
Comme et , est l’inverse de .