Pré-calcul Exemples

Trouver le domaine ((5y^2)/(1-y^2))÷(1-1/(1-y))
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.2.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Divisez par .
Étape 2.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.4
Toute racine de est .
Étape 2.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.2.2.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Divisez par .
Étape 5
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Soustrayez des deux côtés de l’équation.
Étape 6.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 6.2.2
Supprimez les parenthèses.
Étape 6.2.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 6.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Multipliez chaque terme dans par .
Étape 6.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.3.2.1.2
Annulez le facteur commun.
Étape 6.3.2.1.3
Réécrivez l’expression.
Étape 6.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.1
Appliquez la propriété distributive.
Étape 6.3.3.2
Multipliez par .
Étape 6.3.3.3
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.3.3.1
Multipliez par .
Étape 6.3.3.3.2
Multipliez par .
Étape 6.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Réécrivez l’équation comme .
Étape 6.4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 6.4.2.2
Additionnez et .
Étape 7
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 8