Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Réécrivez l’expression.
Étape 2.2.2.2
Annulez le facteur commun de .
Étape 2.2.2.2.1
Annulez le facteur commun.
Étape 2.2.2.2.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Étape 2.2.3.1
Annulez le facteur commun à et .
Étape 2.2.3.1.1
Factorisez à partir de .
Étape 2.2.3.1.2
Annulez les facteurs communs.
Étape 2.2.3.1.2.1
Factorisez à partir de .
Étape 2.2.3.1.2.2
Annulez le facteur commun.
Étape 2.2.3.1.2.3
Réécrivez l’expression.
Étape 2.2.3.2
Annulez le facteur commun de .
Étape 2.2.3.2.1
Annulez le facteur commun.
Étape 2.2.3.2.2
Divisez par .
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2
Comme les exposants sont égaux, les bases des exposants des deux côtés de l’équation doivent être égales.
Étape 4.3
Résolvez .
Étape 4.3.1
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4.3.2
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.3.2.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.3.2.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.3.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :