Pré-calcul Exemples

Trouver le domaine (2b)/(2b+3)+5/(3-2b)-(4b^2+9)/(4b^2-9)
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Placez le signe moins devant la fraction.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Ajoutez aux deux côtés de l’équation.
Étape 6.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Divisez chaque terme dans par .
Étape 6.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1.1
Annulez le facteur commun.
Étape 6.2.2.1.2
Divisez par .
Étape 6.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.4.1
Réécrivez comme .
Étape 6.4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.2.1
Réécrivez comme .
Étape 6.4.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.4.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.4.3.1
Réécrivez comme .
Étape 6.4.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 8