Pré-calcul Exemples

Trouver les asymptotes r(x)=(x^3-2x^2-3x)/(x-3)
Étape 1
Déterminez où l’expression est indéfinie.
Étape 2
Les asymptotes verticales se trouvent dans des zones de discontinuité infinie.
Aucune asymptote verticale
Étape 3
Étudiez la fonction rationnelle est le degré du numérateur et est le degré du dénominateur.
1. Si , alors l’abscisse, , est l’asymptote horizontale.
2. Si , alors l’asymptote horizontale est la droite .
3. Si , alors il n’y a pas d’asymptote horizontale (il existe une asymptote oblique).
Étape 4
Déterminez et .
Étape 5
Comme , il n’y a pas d’asymptote horizontale.
Aucune asymptote horizontale
Étape 6
Déterminez l’asymptote oblique par division polynomiale.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.1.1
Factorisez à partir de .
Étape 6.1.1.1.2
Factorisez à partir de .
Étape 6.1.1.1.3
Factorisez à partir de .
Étape 6.1.1.1.4
Factorisez à partir de .
Étape 6.1.1.1.5
Factorisez à partir de .
Étape 6.1.1.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.1.1.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 6.1.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1.1
Annulez le facteur commun.
Étape 6.1.2.1.2
Divisez par .
Étape 6.1.2.2
Appliquez la propriété distributive.
Étape 6.1.2.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.3.1
Multipliez par .
Étape 6.1.2.3.2
Multipliez par .
Étape 6.2
L’asymptote oblique est la partie polynomiale du résultat de la division longue.
Étape 7
C’est l’ensemble de toutes les asymptotes.
Aucune asymptote verticale
Aucune asymptote horizontale
Asymptotes obliques :
Étape 8