Entrer un problème...
Pré-calcul Exemples
Étape 1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 2
Ajoutez aux deux côtés de l’inégalité.
Étape 3
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 4
Étape 4.1
Soustrayez des deux côtés de l’inégalité.
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 4.2.2
Simplifiez le côté gauche.
Étape 4.2.2.1
Annulez le facteur commun de .
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.2.3
Simplifiez le côté droit.
Étape 4.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6
Étape 6.1
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 6.2
Simplifiez chaque côté de l’équation.
Étape 6.2.1
Utilisez pour réécrire comme .
Étape 6.2.2
Simplifiez le côté gauche.
Étape 6.2.2.1
Simplifiez .
Étape 6.2.2.1.1
Multipliez les exposants dans .
Étape 6.2.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.2.2.1.1.2
Annulez le facteur commun de .
Étape 6.2.2.1.1.2.1
Annulez le facteur commun.
Étape 6.2.2.1.1.2.2
Réécrivez l’expression.
Étape 6.2.2.1.2
Simplifiez
Étape 6.2.3
Simplifiez le côté droit.
Étape 6.2.3.1
L’élévation de à toute puissance positive produit .
Étape 6.3
Résolvez .
Étape 6.3.1
Soustrayez des deux côtés de l’équation.
Étape 6.3.2
Divisez chaque terme dans par et simplifiez.
Étape 6.3.2.1
Divisez chaque terme dans par .
Étape 6.3.2.2
Simplifiez le côté gauche.
Étape 6.3.2.2.1
Annulez le facteur commun de .
Étape 6.3.2.2.1.1
Annulez le facteur commun.
Étape 6.3.2.2.1.2
Divisez par .
Étape 6.3.2.3
Simplifiez le côté droit.
Étape 6.3.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 7
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression définie.
Aucune solution