Entrer un problème...
Pré-algèbre Exemples
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Étape 2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Étape 3.1
Factorisez à partir de .
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.2
Réécrivez comme .
Étape 3.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 4
Étape 4.1
Annulez le facteur commun.
Étape 4.2
Réécrivez l’expression.
Étape 5
Étape 5.1
Réécrivez comme .
Étape 5.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 5.3
Réécrivez le polynôme.
Étape 5.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 6
Étape 6.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.2
Écrivez la forme factorisée avec ces entiers.
Étape 7
Étape 7.1
Annulez le facteur commun.
Étape 7.2
Réécrivez l’expression.
Étape 8
Étape 8.1
Factorisez à partir de .
Étape 8.2
Factorisez à partir de .
Étape 8.3
Annulez le facteur commun.
Étape 8.4
Réécrivez l’expression.
Étape 9
Multipliez par .
Étape 10
Étape 10.1
Annulez le facteur commun.
Étape 10.2
Réécrivez l’expression.
Étape 11
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :