Entrer un problème...
Pré-algèbre Exemples
Étape 1
Étape 1.1
Pour déterminer l’intervalle pour la première partie, déterminez où l’intérieur de la valeur absolue est non négatif.
Étape 1.2
Résolvez l’inégalité.
Étape 1.2.1
Ajoutez aux deux côtés de l’inégalité.
Étape 1.2.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.2.1
Divisez chaque terme dans par .
Étape 1.2.2.2
Simplifiez le côté gauche.
Étape 1.2.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.2.1.2
Divisez par .
Étape 1.3
Dans la partie où est non négatif, retirez la valeur absolue.
Étape 1.4
Pour déterminer l’intervalle pour la deuxième partie, déterminez où l’intérieur de la valeur absolue est négatif.
Étape 1.5
Résolvez l’inégalité.
Étape 1.5.1
Ajoutez aux deux côtés de l’inégalité.
Étape 1.5.2
Divisez chaque terme dans par et simplifiez.
Étape 1.5.2.1
Divisez chaque terme dans par .
Étape 1.5.2.2
Simplifiez le côté gauche.
Étape 1.5.2.2.1
Annulez le facteur commun de .
Étape 1.5.2.2.1.1
Annulez le facteur commun.
Étape 1.5.2.2.1.2
Divisez par .
Étape 1.6
Dans la partie où est négatif, retirez la valeur absolue et multipliez par .
Étape 1.7
Écrivez comme fonction définie par morceaux.
Étape 1.8
Additionnez et .
Étape 1.9
Simplifiez .
Étape 1.9.1
Simplifiez chaque terme.
Étape 1.9.1.1
Appliquez la propriété distributive.
Étape 1.9.1.2
Multipliez par .
Étape 1.9.1.3
Multipliez par .
Étape 1.9.2
Additionnez et .
Étape 2
Étape 2.1
Résolvez pour .
Étape 2.1.1
Déplacez tous les termes contenant du côté gauche de l’inégalité.
Étape 2.1.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 2.1.1.2
Soustrayez de .
Étape 2.1.2
Soustrayez des deux côtés de l’inégalité.
Étape 2.1.3
Divisez chaque terme dans par et simplifiez.
Étape 2.1.3.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 2.1.3.2
Simplifiez le côté gauche.
Étape 2.1.3.2.1
Annulez le facteur commun de .
Étape 2.1.3.2.1.1
Annulez le facteur commun.
Étape 2.1.3.2.1.2
Divisez par .
Étape 2.1.3.3
Simplifiez le côté droit.
Étape 2.1.3.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2
Déterminez l’intersection de et .
Étape 3
Étape 3.1
Résolvez pour .
Étape 3.1.1
Déplacez tous les termes contenant du côté gauche de l’inégalité.
Étape 3.1.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 3.1.1.2
Soustrayez de .
Étape 3.1.2
Soustrayez des deux côtés de l’inégalité.
Étape 3.1.3
Divisez chaque terme dans par et simplifiez.
Étape 3.1.3.1
Divisez chaque terme dans par . Lorsque vous multipliez ou divisez les deux côtés d’une inégalité par une valeur négative, inversez le sens du signe d’inégalité.
Étape 3.1.3.2
Simplifiez le côté gauche.
Étape 3.1.3.2.1
Annulez le facteur commun de .
Étape 3.1.3.2.1.1
Annulez le facteur commun.
Étape 3.1.3.2.1.2
Divisez par .
Étape 3.1.3.3
Simplifiez le côté droit.
Étape 3.1.3.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.2
Déterminez l’intersection de et .
Étape 4
Déterminez l’union des solutions.
Étape 5