Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée 84(x+1)=(85+x)(x-1)
Étape 1
Comme est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez.
Étape 2.2
Simplifiez en ajoutant des zéros.
Étape 2.3
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Appliquez la propriété distributive.
Étape 2.3.3
Appliquez la propriété distributive.
Étape 2.4
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.1
Multipliez par .
Étape 2.4.1.2
Multipliez par .
Étape 2.4.1.3
Déplacez à gauche de .
Étape 2.4.1.4
Réécrivez comme .
Étape 2.4.2
Soustrayez de .
Étape 3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Multipliez par .
Étape 4
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez de .
Étape 4.2.2
Additionnez et .
Étape 5
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Ajoutez aux deux côtés de l’équation.
Étape 5.2
Additionnez et .
Étape 6
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 7
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Réécrivez comme .
Étape 7.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 8
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 8.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 8.3
La solution complète est le résultat des parties positive et négative de la solution.