Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée 3x(3x-16)=-64
Étape 1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.1
Annulez le facteur commun.
Étape 1.2.1.1.2
Divisez par .
Étape 1.2.1.2
Appliquez la propriété distributive.
Étape 1.2.1.3
Remettez dans l’ordre.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.1.3.2
Déplacez à gauche de .
Étape 1.2.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Déplacez .
Étape 1.2.2.2
Multipliez par .
Étape 1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Placez le signe moins devant la fraction.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Multipliez par le plus petit dénominateur commun , puis simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la propriété distributive.
Étape 3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez par .
Étape 3.2.2
Multipliez par .
Étape 3.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Annulez le facteur commun.
Étape 3.2.3.2
Réécrivez l’expression.
Étape 4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Élevez à la puissance .
Étape 6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1
Multipliez par .
Étape 6.1.2.2
Multipliez par .
Étape 6.1.3
Soustrayez de .
Étape 6.1.4
Réécrivez comme .
Étape 6.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.1.6
plus or minus is .
Étape 6.2
Multipliez par .
Étape 6.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Factorisez à partir de .
Étape 6.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.2.1
Factorisez à partir de .
Étape 6.3.2.2
Annulez le facteur commun.
Étape 6.3.2.3
Réécrivez l’expression.
Étape 7
La réponse finale est la combinaison des deux solutions.
Racines doubles