Entrer un problème...
Pré-algèbre Exemples
Étape 1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3
Étape 3.1
Simplifiez le numérateur.
Étape 3.1.1
Élevez à la puissance .
Étape 3.1.2
Multipliez .
Étape 3.1.2.1
Multipliez par .
Étape 3.1.2.2
Multipliez par .
Étape 3.1.3
Soustrayez de .
Étape 3.1.4
Réécrivez comme .
Étape 3.1.5
Réécrivez comme .
Étape 3.1.6
Réécrivez comme .
Étape 3.1.7
Réécrivez comme .
Étape 3.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.1.9
Déplacez à gauche de .
Étape 3.2
Multipliez par .
Étape 3.3
Simplifiez .
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez .
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Soustrayez de .
Étape 4.1.4
Réécrivez comme .
Étape 4.1.5
Réécrivez comme .
Étape 4.1.6
Réécrivez comme .
Étape 4.1.7
Réécrivez comme .
Étape 4.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.1.9
Déplacez à gauche de .
Étape 4.2
Multipliez par .
Étape 4.3
Simplifiez .
Étape 4.4
Remplacez le par .
Étape 4.5
Divisez la fraction en deux fractions.
Étape 4.6
Placez le signe moins devant la fraction.
Étape 5
Étape 5.1
Simplifiez le numérateur.
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez .
Étape 5.1.2.1
Multipliez par .
Étape 5.1.2.2
Multipliez par .
Étape 5.1.3
Soustrayez de .
Étape 5.1.4
Réécrivez comme .
Étape 5.1.5
Réécrivez comme .
Étape 5.1.6
Réécrivez comme .
Étape 5.1.7
Réécrivez comme .
Étape 5.1.8
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.1.9
Déplacez à gauche de .
Étape 5.2
Multipliez par .
Étape 5.3
Simplifiez .
Étape 5.4
Remplacez le par .
Étape 5.5
Divisez la fraction en deux fractions.
Étape 5.6
Simplifiez chaque terme.
Étape 5.6.1
Placez le signe moins devant la fraction.
Étape 5.6.2
Placez le signe moins devant la fraction.
Étape 6
La réponse finale est la combinaison des deux solutions.