Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée 4x-12=2x(x+6)
Étape 1
Comme est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez.
Étape 2.2
Simplifiez en ajoutant des zéros.
Étape 2.3
Appliquez la propriété distributive.
Étape 2.4
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Déplacez .
Étape 2.4.2
Multipliez par .
Étape 2.5
Multipliez par .
Étape 3
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez de .
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez à partir de .
Étape 5.2
Factorisez à partir de .
Étape 5.3
Factorisez à partir de .
Étape 5.4
Factorisez à partir de .
Étape 5.5
Factorisez à partir de .
Étape 6
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Divisez chaque terme dans par .
Étape 6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Annulez le facteur commun.
Étape 6.2.1.2
Divisez par .
Étape 6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Divisez par .
Étape 7
Utilisez la formule quadratique pour déterminer les solutions.
Étape 8
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 9
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Élevez à la puissance .
Étape 9.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.2.1
Multipliez par .
Étape 9.1.2.2
Multipliez par .
Étape 9.1.3
Soustrayez de .
Étape 9.1.4
Réécrivez comme .
Étape 9.1.5
Réécrivez comme .
Étape 9.1.6
Réécrivez comme .
Étape 9.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 9.1.7.1
Factorisez à partir de .
Étape 9.1.7.2
Réécrivez comme .
Étape 9.1.8
Extrayez les termes de sous le radical.
Étape 9.1.9
Déplacez à gauche de .
Étape 9.2
Multipliez par .
Étape 9.3
Simplifiez .
Étape 10
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 10.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 10.1.1
Élevez à la puissance .
Étape 10.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.2.1
Multipliez par .
Étape 10.1.2.2
Multipliez par .
Étape 10.1.3
Soustrayez de .
Étape 10.1.4
Réécrivez comme .
Étape 10.1.5
Réécrivez comme .
Étape 10.1.6
Réécrivez comme .
Étape 10.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 10.1.7.1
Factorisez à partir de .
Étape 10.1.7.2
Réécrivez comme .
Étape 10.1.8
Extrayez les termes de sous le radical.
Étape 10.1.9
Déplacez à gauche de .
Étape 10.2
Multipliez par .
Étape 10.3
Simplifiez .
Étape 10.4
Remplacez le par .
Étape 11
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Élevez à la puissance .
Étape 11.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 11.1.2.1
Multipliez par .
Étape 11.1.2.2
Multipliez par .
Étape 11.1.3
Soustrayez de .
Étape 11.1.4
Réécrivez comme .
Étape 11.1.5
Réécrivez comme .
Étape 11.1.6
Réécrivez comme .
Étape 11.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 11.1.7.1
Factorisez à partir de .
Étape 11.1.7.2
Réécrivez comme .
Étape 11.1.8
Extrayez les termes de sous le radical.
Étape 11.1.9
Déplacez à gauche de .
Étape 11.2
Multipliez par .
Étape 11.3
Simplifiez .
Étape 11.4
Remplacez le par .
Étape 12
La réponse finale est la combinaison des deux solutions.