Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée 2420=2000(1+r)^2
Étape 1
Réécrivez l’équation comme .
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Factorisez à partir de .
Étape 2.3.1.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Factorisez à partir de .
Étape 2.3.1.2.2
Annulez le facteur commun.
Étape 2.3.1.2.3
Réécrivez l’expression.
Étape 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez comme .
Étape 4.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Réécrivez comme .
Étape 4.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Réécrivez comme .
Étape 4.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 5.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Soustrayez des deux côtés de l’équation.
Étape 5.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.3
Associez et .
Étape 5.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.5.1
Multipliez par .
Étape 5.2.5.2
Soustrayez de .
Étape 5.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 5.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Soustrayez des deux côtés de l’équation.
Étape 5.4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.4.3
Associez et .
Étape 5.4.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.4.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.5.1
Multipliez par .
Étape 5.4.5.2
Soustrayez de .
Étape 5.4.6
Placez le signe moins devant la fraction.
Étape 5.5
La solution complète est le résultat des parties positive et négative de la solution.