Entrer un problème...
Pré-algèbre Exemples
Étape 1
Étape 1.1
Simplifiez chaque terme.
Étape 1.1.1
Appliquez la propriété distributive.
Étape 1.1.2
Multipliez par .
Étape 1.1.3
Multipliez par .
Étape 1.2
Additionnez et .
Étape 2
Multipliez par .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez de .
Étape 4
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Simplifiez
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Annulez le facteur commun de .
Étape 4.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2
Réécrivez l’expression.
Étape 4.2.3
Multipliez par .
Étape 4.3
Remettez dans l’ordre et .
Étape 5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 7
Étape 7.1
Simplifiez le numérateur.
Étape 7.1.1
Élevez à la puissance .
Étape 7.1.2
Multipliez .
Étape 7.1.2.1
Multipliez par .
Étape 7.1.2.2
Multipliez par .
Étape 7.1.3
Soustrayez de .
Étape 7.1.4
Réécrivez comme .
Étape 7.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.2
Multipliez par .
Étape 7.3
Simplifiez .
Étape 8
Étape 8.1
Simplifiez le numérateur.
Étape 8.1.1
Élevez à la puissance .
Étape 8.1.2
Multipliez .
Étape 8.1.2.1
Multipliez par .
Étape 8.1.2.2
Multipliez par .
Étape 8.1.3
Soustrayez de .
Étape 8.1.4
Réécrivez comme .
Étape 8.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 8.2
Multipliez par .
Étape 8.3
Simplifiez .
Étape 8.4
Remplacez le par .
Étape 8.5
Additionnez et .
Étape 9
Étape 9.1
Simplifiez le numérateur.
Étape 9.1.1
Élevez à la puissance .
Étape 9.1.2
Multipliez .
Étape 9.1.2.1
Multipliez par .
Étape 9.1.2.2
Multipliez par .
Étape 9.1.3
Soustrayez de .
Étape 9.1.4
Réécrivez comme .
Étape 9.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 9.2
Multipliez par .
Étape 9.3
Simplifiez .
Étape 9.4
Remplacez le par .
Étape 9.5
Soustrayez de .
Étape 10
La réponse finale est la combinaison des deux solutions.