Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée (x-4)/x=3/(x^2)+(3x^2+27x+60)/(2x^2)
Étape 1
Factorisez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.1.4
Factorisez à partir de .
Étape 1.1.5
Factorisez à partir de .
Étape 1.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.2.2
Supprimez les parenthèses inutiles.
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.10
Multipliez par .
Étape 2.11
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2
Associez et .
Étape 3.2.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Factorisez à partir de .
Étape 3.2.3.2
Annulez le facteur commun.
Étape 3.2.3.3
Réécrivez l’expression.
Étape 3.2.4
Appliquez la propriété distributive.
Étape 3.2.5
Multipliez par .
Étape 3.2.6
Appliquez la propriété distributive.
Étape 3.2.7
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.7.1
Déplacez .
Étape 3.2.7.2
Multipliez par .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.2.1
Associez et .
Étape 3.3.1.2.2
Multipliez par .
Étape 3.3.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.3.1
Annulez le facteur commun.
Étape 3.3.1.3.2
Réécrivez l’expression.
Étape 3.3.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.1.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.5.1
Factorisez à partir de .
Étape 3.3.1.5.2
Annulez le facteur commun.
Étape 3.3.1.5.3
Réécrivez l’expression.
Étape 3.3.1.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.6.1
Annulez le facteur commun.
Étape 3.3.1.6.2
Réécrivez l’expression.
Étape 3.3.1.7
Appliquez la propriété distributive.
Étape 3.3.1.8
Multipliez par .
Étape 3.3.1.9
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.9.1
Appliquez la propriété distributive.
Étape 3.3.1.9.2
Appliquez la propriété distributive.
Étape 3.3.1.9.3
Appliquez la propriété distributive.
Étape 3.3.1.10
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.10.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.10.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1.10.1.1.1
Déplacez .
Étape 3.3.1.10.1.1.2
Multipliez par .
Étape 3.3.1.10.1.2
Multipliez par .
Étape 3.3.1.10.1.3
Multipliez par .
Étape 3.3.1.10.2
Additionnez et .
Étape 3.3.2
Additionnez et .
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Soustrayez des deux côtés de l’équation.
Étape 4.1.2
Soustrayez des deux côtés de l’équation.
Étape 4.1.3
Soustrayez de .
Étape 4.1.4
Soustrayez de .
Étape 4.2
Soustrayez des deux côtés de l’équation.
Étape 4.3
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Factorisez à partir de .
Étape 4.3.1.2
Factorisez à partir de .
Étape 4.3.1.3
Réécrivez comme .
Étape 4.3.1.4
Factorisez à partir de .
Étape 4.3.1.5
Factorisez à partir de .
Étape 4.3.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.3.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.3.2.2
Supprimez les parenthèses inutiles.
Étape 4.4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Définissez égal à .
Étape 4.5.2
Soustrayez des deux côtés de l’équation.
Étape 4.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Définissez égal à .
Étape 4.6.2
Soustrayez des deux côtés de l’équation.
Étape 4.7
La solution finale est l’ensemble des valeurs qui rendent vraie.