Entrer un problème...
Pré-algèbre Exemples
Étape 1
Étape 1.1
Pour déterminer la coordonnée du sommet, définissez l’intérieur de la valeur absolue égal à . Dans ce cas, .
Étape 1.2
Résolvez l’équation pour déterminer la coordonnée pour le sommet de la valeur absolue.
Étape 1.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.2.2
Simplifiez .
Étape 1.2.2.1
Réécrivez comme .
Étape 1.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 1.3
Remplacez la variable par dans l’expression.
Étape 1.4
Simplifiez .
Étape 1.4.1
L’élévation de à toute puissance positive produit .
Étape 1.4.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 1.5
Le sommet de la valeur absolue est .
Étape 2
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 3
Étape 3.1
Remplacez la valeur dans . Dans ce cas, le point est .
Étape 3.1.1
Remplacez la variable par dans l’expression.
Étape 3.1.2
Simplifiez le résultat.
Étape 3.1.2.1
Élevez à la puissance .
Étape 3.1.2.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.1.2.3
La réponse finale est .
Étape 3.2
Remplacez la valeur dans . Dans ce cas, le point est .
Étape 3.2.1
Remplacez la variable par dans l’expression.
Étape 3.2.2
Simplifiez le résultat.
Étape 3.2.2.1
Élevez à la puissance .
Étape 3.2.2.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.2.2.3
La réponse finale est .
Étape 3.3
Remplacez la valeur dans . Dans ce cas, le point est .
Étape 3.3.1
Remplacez la variable par dans l’expression.
Étape 3.3.2
Simplifiez le résultat.
Étape 3.3.2.1
Élevez à la puissance .
Étape 3.3.2.2
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 3.3.2.3
La réponse finale est .
Étape 3.4
La valeur absolue peut être représentée avec les points autour du sommet
Étape 4