Pré-algèbre Exemples

Étape 1
Déterminez le domaine pour afin de pouvoir sélectionner une liste de valeurs pour déterminer une liste de points et faciliter la représentation graphique de la fonction de valeur absolue.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 1.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 1.2.2
Plus ou moins est .
Étape 1.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 2
Pour chaque valeur , il y a une valeur . Sélectionnez quelques valeurs depuis le domaine. Il serait plus utile de sélectionner les valeurs de sorte qu’elles soient proches de la valeur du sommet de la valeur absolue.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Remplacez la variable par dans l’expression.
Étape 2.1.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.2.1.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.1.2.1.2
Divisez par .
Étape 2.1.2.2
Soustrayez de .
Étape 2.1.2.3
La réponse finale est .
Étape 2.2
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Remplacez la variable par dans l’expression.
Étape 2.2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.2.2
Soustrayez de .
Étape 2.2.2.3
La réponse finale est .
Étape 2.3
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Remplacez la variable par dans l’expression.
Étape 2.3.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.2.2
Additionnez et .
Étape 2.3.2.3
La réponse finale est .
Étape 2.4
Remplacez la valeur dans . Dans ce cas, le point est .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Remplacez la variable par dans l’expression.
Étape 2.4.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 2.4.2.1.2
Divisez par .
Étape 2.4.2.2
Additionnez et .
Étape 2.4.2.3
La réponse finale est .
Étape 2.5
La valeur absolue peut être représentée avec les points autour du sommet
Étape 3