Entrer un problème...
Pré-algèbre Exemples
Étape 1
Étape 1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.1.2
Ajoutez aux deux côtés de l’équation.
Étape 1.1.3
Soustrayez des deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Simplifiez chaque terme.
Étape 1.2.3.1.1
Annulez le facteur commun à et .
Étape 1.2.3.1.1.1
Multipliez par .
Étape 1.2.3.1.1.2
Annulez les facteurs communs.
Étape 1.2.3.1.1.2.1
Factorisez à partir de .
Étape 1.2.3.1.1.2.2
Annulez le facteur commun.
Étape 1.2.3.1.1.2.3
Réécrivez l’expression.
Étape 1.2.3.1.2
Annulez le facteur commun à et .
Étape 1.2.3.1.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2
Annulez les facteurs communs.
Étape 1.2.3.1.2.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2.2
Annulez le facteur commun.
Étape 1.2.3.1.2.2.3
Réécrivez l’expression.
Étape 1.2.3.1.3
Placez le signe moins devant la fraction.
Étape 2
Déterminez où l’expression est indéfinie.
Étape 3
Étudiez la fonction rationnelle où est le degré du numérateur et est le degré du dénominateur.
1. Si , alors l’abscisse, , est l’asymptote horizontale.
2. Si , alors l’asymptote horizontale est la droite .
3. Si , alors il n’y a pas d’asymptote horizontale (il existe une asymptote oblique).
Étape 4
Déterminez et .
Étape 5
Comme , l’abscisse, , est l’asymptote horizontale.
Étape 6
Il n’y a pas d’asymptote oblique car le degré du numérateur est inférieur ou égal au degré du dénominateur.
Aucune asymptote oblique
Étape 7
C’est l’ensemble de toutes les asymptotes.
Asymptotes verticales :
Asymptotes horizontales :
Aucune asymptote oblique
Étape 8