Entrer un problème...
Pré-algèbre Exemples
Étape 1
Étape 1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Ajoutez aux deux côtés de l’équation.
Étape 1.1.3
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Étape 1.2.2.1
Annulez le facteur commun de .
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Étape 1.2.3.1
Simplifiez chaque terme.
Étape 1.2.3.1.1
Placez le signe moins devant la fraction.
Étape 1.2.3.1.2
Annulez le facteur commun à et .
Étape 1.2.3.1.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2
Annulez les facteurs communs.
Étape 1.2.3.1.2.2.1
Factorisez à partir de .
Étape 1.2.3.1.2.2.2
Annulez le facteur commun.
Étape 1.2.3.1.2.2.3
Réécrivez l’expression.
Étape 2
Étape 2.1
Réécrivez l’équation en forme de sommet.
Étape 2.1.1
Complétez le carré pour .
Étape 2.1.1.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 2.1.1.2
Étudiez la forme du sommet d’une parabole.
Étape 2.1.1.3
Déterminez la valeur de en utilisant la formule .
Étape 2.1.1.3.1
Remplacez les valeurs de et dans la formule .
Étape 2.1.1.3.2
Simplifiez le côté droit.
Étape 2.1.1.3.2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.1.3.2.2
Annulez le facteur commun à et .
Étape 2.1.1.3.2.2.1
Réécrivez comme .
Étape 2.1.1.3.2.2.2
Placez le signe moins devant la fraction.
Étape 2.1.1.3.2.3
Associez et .
Étape 2.1.1.3.2.4
Annulez le facteur commun à et .
Étape 2.1.1.3.2.4.1
Factorisez à partir de .
Étape 2.1.1.3.2.4.2
Annulez les facteurs communs.
Étape 2.1.1.3.2.4.2.1
Factorisez à partir de .
Étape 2.1.1.3.2.4.2.2
Annulez le facteur commun.
Étape 2.1.1.3.2.4.2.3
Réécrivez l’expression.
Étape 2.1.1.3.2.5
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.1.3.2.6
Annulez le facteur commun de .
Étape 2.1.1.3.2.6.1
Factorisez à partir de .
Étape 2.1.1.3.2.6.2
Annulez le facteur commun.
Étape 2.1.1.3.2.6.3
Réécrivez l’expression.
Étape 2.1.1.3.2.7
Multipliez par .
Étape 2.1.1.4
Déterminez la valeur de en utilisant la formule .
Étape 2.1.1.4.1
Remplacez les valeurs de , et dans la formule .
Étape 2.1.1.4.2
Simplifiez le côté droit.
Étape 2.1.1.4.2.1
Simplifiez chaque terme.
Étape 2.1.1.4.2.1.1
Simplifiez le numérateur.
Étape 2.1.1.4.2.1.1.1
Appliquez la règle de produit à .
Étape 2.1.1.4.2.1.1.2
Un à n’importe quelle puissance est égal à un.
Étape 2.1.1.4.2.1.1.3
Élevez à la puissance .
Étape 2.1.1.4.2.1.2
Simplifiez le dénominateur.
Étape 2.1.1.4.2.1.2.1
Multipliez par .
Étape 2.1.1.4.2.1.2.2
Associez et .
Étape 2.1.1.4.2.1.3
Divisez par .
Étape 2.1.1.4.2.1.4
Déplacez le moins un du dénominateur de .
Étape 2.1.1.4.2.1.5
Réécrivez comme .
Étape 2.1.1.4.2.1.6
Multipliez .
Étape 2.1.1.4.2.1.6.1
Multipliez par .
Étape 2.1.1.4.2.1.6.2
Multipliez par .
Étape 2.1.1.4.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.1.1.4.2.3
Additionnez et .
Étape 2.1.1.4.2.4
Annulez le facteur commun à et .
Étape 2.1.1.4.2.4.1
Factorisez à partir de .
Étape 2.1.1.4.2.4.2
Annulez les facteurs communs.
Étape 2.1.1.4.2.4.2.1
Factorisez à partir de .
Étape 2.1.1.4.2.4.2.2
Annulez le facteur commun.
Étape 2.1.1.4.2.4.2.3
Réécrivez l’expression.
Étape 2.1.1.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 2.1.2
Définissez égal au nouveau côté droit.
Étape 2.2
Utilisez la forme du sommet, , pour déterminer les valeurs de , et .
Étape 2.3
Comme la valeur de est négative, la parabole ouvre vers le bas.
ouvre vers le bas
Étape 2.4
Déterminez le sommet .
Étape 2.5
Déterminez , la distance du sommet au foyer.
Étape 2.5.1
Déterminez la distance du sommet à un foyer de la parabole en utilisant la formule suivante.
Étape 2.5.2
Remplacez la valeur de dans la fonction.
Étape 2.5.3
Simplifiez
Étape 2.5.3.1
Annulez le facteur commun à et .
Étape 2.5.3.1.1
Réécrivez comme .
Étape 2.5.3.1.2
Placez le signe moins devant la fraction.
Étape 2.5.3.2
Associez et .
Étape 2.5.3.3
Divisez par .
Étape 2.5.3.4
Annulez le facteur commun de .
Étape 2.5.3.4.1
Annulez le facteur commun.
Étape 2.5.3.4.2
Réécrivez l’expression.
Étape 2.5.3.5
Multipliez par .
Étape 2.6
Déterminez le foyer.
Étape 2.6.1
Le foyer d’une parabole peut être trouvé en ajoutant à la coordonnée y si la parabole ouvre vers le haut ou vers le bas.
Étape 2.6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 2.7
Déterminez l’axe de symétrie en trouvant la droite qui passe par le sommet et le foyer.
Étape 2.8
Déterminez la directrice.
Étape 2.8.1
La directrice d’une parabole est la droite horizontale déterminée en soustrayant de la coordonnée y du sommet si la parabole ouvre vers le haut ou vers le bas.
Étape 2.8.2
Remplacez les valeurs connues de et dans la formule et simplifiez.
Étape 2.9
Utilisez les propriétés de la parabole pour analyser la parabole et la représenter sous forme graphique.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.2
Simplifiez chaque terme.
Étape 3.2.2.1
L’élévation de à toute puissance positive produit .
Étape 3.2.2.2
Multipliez par .
Étape 3.2.3
Simplifiez l’expression.
Étape 3.2.3.1
Additionnez et .
Étape 3.2.3.2
Divisez par .
Étape 3.2.3.3
Additionnez et .
Étape 3.2.4
La réponse finale est .
Étape 3.3
La valeur sur est .
Étape 3.4
Remplacez la variable par dans l’expression.
Étape 3.5
Simplifiez le résultat.
Étape 3.5.1
Associez les numérateurs sur le dénominateur commun.
Étape 3.5.2
Simplifiez chaque terme.
Étape 3.5.2.1
Multipliez par en additionnant les exposants.
Étape 3.5.2.1.1
Multipliez par .
Étape 3.5.2.1.1.1
Élevez à la puissance .
Étape 3.5.2.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.5.2.1.2
Additionnez et .
Étape 3.5.2.2
Élevez à la puissance .
Étape 3.5.3
Additionnez et .
Étape 3.5.4
Simplifiez chaque terme.
Étape 3.5.4.1
Divisez par .
Étape 3.5.4.2
Placez le signe moins devant la fraction.
Étape 3.5.5
Simplifiez l’expression.
Étape 3.5.5.1
Écrivez comme une fraction avec un dénominateur commun.
Étape 3.5.5.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.5.5.3
Soustrayez de .
Étape 3.5.6
La réponse finale est .
Étape 3.6
La valeur sur est .
Étape 3.7
Remplacez la variable par dans l’expression.
Étape 3.8
Simplifiez le résultat.
Étape 3.8.1
Associez les numérateurs sur le dénominateur commun.
Étape 3.8.2
Simplifiez chaque terme.
Étape 3.8.2.1
Élevez à la puissance .
Étape 3.8.2.2
Multipliez par .
Étape 3.8.3
Simplifiez l’expression.
Étape 3.8.3.1
Additionnez et .
Étape 3.8.3.2
Divisez par .
Étape 3.8.3.3
Écrivez comme une fraction avec un dénominateur commun.
Étape 3.8.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.8.3.5
Additionnez et .
Étape 3.8.4
La réponse finale est .
Étape 3.9
La valeur sur est .
Étape 3.10
Remplacez la variable par dans l’expression.
Étape 3.11
Simplifiez le résultat.
Étape 3.11.1
Associez les numérateurs sur le dénominateur commun.
Étape 3.11.2
Simplifiez chaque terme.
Étape 3.11.2.1
Élevez à la puissance .
Étape 3.11.2.2
Multipliez par .
Étape 3.11.3
Simplifiez l’expression.
Étape 3.11.3.1
Additionnez et .
Étape 3.11.3.2
Divisez par .
Étape 3.11.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.11.5
Associez et .
Étape 3.11.6
Associez les numérateurs sur le dénominateur commun.
Étape 3.11.7
Simplifiez le numérateur.
Étape 3.11.7.1
Multipliez par .
Étape 3.11.7.2
Additionnez et .
Étape 3.11.8
La réponse finale est .
Étape 3.12
La valeur sur est .
Étape 3.13
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Étape 4
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 5