Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée (z^2)/4=z/5+9/20
Étape 1
Multipliez les deux côtés par .
Étape 2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Annulez le facteur commun.
Étape 2.1.1.2
Réécrivez l’expression.
Étape 2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Appliquez la propriété distributive.
Étape 2.2.1.1.2
Associez et .
Étape 2.2.1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.3.1
Factorisez à partir de .
Étape 2.2.1.1.3.2
Annulez le facteur commun.
Étape 2.2.1.1.3.3
Réécrivez l’expression.
Étape 2.2.1.2
Déplacez à gauche de .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Multipliez par le plus petit dénominateur commun , puis simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Appliquez la propriété distributive.
Étape 3.3.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2.1.2
Annulez le facteur commun.
Étape 3.3.2.1.3
Réécrivez l’expression.
Étape 3.3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2.2.2
Annulez le facteur commun.
Étape 3.3.2.2.3
Réécrivez l’expression.
Étape 3.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.1
Élevez à la puissance .
Étape 3.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1.2.1
Multipliez par .
Étape 3.6.1.2.2
Multipliez par .
Étape 3.6.1.3
Additionnez et .
Étape 3.6.1.4
Réécrivez comme .
Étape 3.6.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.6.2
Multipliez par .
Étape 3.6.3
Simplifiez .
Étape 3.7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.1
Élevez à la puissance .
Étape 3.7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1.2.1
Multipliez par .
Étape 3.7.1.2.2
Multipliez par .
Étape 3.7.1.3
Additionnez et .
Étape 3.7.1.4
Réécrivez comme .
Étape 3.7.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.7.4
Remplacez le par .
Étape 3.7.5
Additionnez et .
Étape 3.8
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1.1
Élevez à la puissance .
Étape 3.8.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.8.1.2.1
Multipliez par .
Étape 3.8.1.2.2
Multipliez par .
Étape 3.8.1.3
Additionnez et .
Étape 3.8.1.4
Réécrivez comme .
Étape 3.8.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.8.2
Multipliez par .
Étape 3.8.3
Simplifiez .
Étape 3.8.4
Remplacez le par .
Étape 3.8.5
Soustrayez de .
Étape 3.8.6
Divisez par .
Étape 3.9
La réponse finale est la combinaison des deux solutions.