Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée (y+4)^2=2y^2+16+28
Étape 1
Additionnez et .
Étape 2
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Appliquez la propriété distributive.
Étape 2.2.2.2
Appliquez la propriété distributive.
Étape 2.2.2.3
Appliquez la propriété distributive.
Étape 2.2.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.1
Multipliez par .
Étape 2.2.3.1.2
Déplacez à gauche de .
Étape 2.2.3.1.3
Multipliez par .
Étape 2.2.3.2
Additionnez et .
Étape 2.3
Soustrayez de .
Étape 3
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez de .
Étape 4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Élevez à la puissance .
Étape 6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.2.1
Multipliez par .
Étape 6.1.2.2
Multipliez par .
Étape 6.1.3
Soustrayez de .
Étape 6.1.4
Réécrivez comme .
Étape 6.1.5
Réécrivez comme .
Étape 6.1.6
Réécrivez comme .
Étape 6.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.7.1
Factorisez à partir de .
Étape 6.1.7.2
Réécrivez comme .
Étape 6.1.8
Extrayez les termes de sous le radical.
Étape 6.1.9
Déplacez à gauche de .
Étape 6.2
Multipliez par .
Étape 6.3
Simplifiez .
Étape 7
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Élevez à la puissance .
Étape 7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Multipliez par .
Étape 7.1.2.2
Multipliez par .
Étape 7.1.3
Soustrayez de .
Étape 7.1.4
Réécrivez comme .
Étape 7.1.5
Réécrivez comme .
Étape 7.1.6
Réécrivez comme .
Étape 7.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.7.1
Factorisez à partir de .
Étape 7.1.7.2
Réécrivez comme .
Étape 7.1.8
Extrayez les termes de sous le radical.
Étape 7.1.9
Déplacez à gauche de .
Étape 7.2
Multipliez par .
Étape 7.3
Simplifiez .
Étape 7.4
Remplacez le par .
Étape 8
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Élevez à la puissance .
Étape 8.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.2.1
Multipliez par .
Étape 8.1.2.2
Multipliez par .
Étape 8.1.3
Soustrayez de .
Étape 8.1.4
Réécrivez comme .
Étape 8.1.5
Réécrivez comme .
Étape 8.1.6
Réécrivez comme .
Étape 8.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.7.1
Factorisez à partir de .
Étape 8.1.7.2
Réécrivez comme .
Étape 8.1.8
Extrayez les termes de sous le radical.
Étape 8.1.9
Déplacez à gauche de .
Étape 8.2
Multipliez par .
Étape 8.3
Simplifiez .
Étape 8.4
Remplacez le par .
Étape 9
La réponse finale est la combinaison des deux solutions.