Pré-algèbre Exemples

Résoudre à l’aide de la propriété de la racine carrée (k+1/2)^2=9/16
Étape 1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Étape 2.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Multipliez par .
Étape 3.2.3.2
Multipliez par .
Étape 3.2.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.5
Soustrayez de .
Étape 3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Soustrayez des deux côtés de l’équation.
Étape 3.4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.3.1
Multipliez par .
Étape 3.4.3.2
Multipliez par .
Étape 3.4.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.5
Soustrayez de .
Étape 3.4.6
Placez le signe moins devant la fraction.
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.