Entrer un problème...
Pré-algèbre Exemples
Étape 1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3
Étape 3.1
Simplifiez le numérateur.
Étape 3.1.1
Élevez à la puissance .
Étape 3.1.2
Multipliez par .
Étape 3.1.3
Appliquez la propriété distributive.
Étape 3.1.4
Simplifiez
Étape 3.1.4.1
Multipliez par .
Étape 3.1.4.2
Multipliez par .
Étape 3.1.4.3
Multipliez par .
Étape 3.1.5
Additionnez et .
Étape 3.1.6
Réécrivez en forme factorisée.
Étape 3.1.6.1
Factorisez à partir de .
Étape 3.1.6.1.1
Factorisez à partir de .
Étape 3.1.6.1.2
Factorisez à partir de .
Étape 3.1.6.1.3
Factorisez à partir de .
Étape 3.1.6.1.4
Factorisez à partir de .
Étape 3.1.6.1.5
Factorisez à partir de .
Étape 3.1.6.2
Factorisez par regroupement.
Étape 3.1.6.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 3.1.6.2.1.1
Factorisez à partir de .
Étape 3.1.6.2.1.2
Réécrivez comme plus
Étape 3.1.6.2.1.3
Appliquez la propriété distributive.
Étape 3.1.6.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.1.6.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 3.1.6.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 3.1.6.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3.1.7
Réécrivez comme .
Étape 3.1.7.1
Réécrivez comme .
Étape 3.1.7.2
Réécrivez comme .
Étape 3.1.7.3
Ajoutez des parenthèses.
Étape 3.1.8
Extrayez les termes de sous le radical.
Étape 3.1.9
Élevez à la puissance .
Étape 3.2
Multipliez par .
Étape 3.3
Simplifiez .
Étape 4
Étape 4.1
Simplifiez le numérateur.
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez par .
Étape 4.1.3
Appliquez la propriété distributive.
Étape 4.1.4
Simplifiez
Étape 4.1.4.1
Multipliez par .
Étape 4.1.4.2
Multipliez par .
Étape 4.1.4.3
Multipliez par .
Étape 4.1.5
Additionnez et .
Étape 4.1.6
Réécrivez en forme factorisée.
Étape 4.1.6.1
Factorisez à partir de .
Étape 4.1.6.1.1
Factorisez à partir de .
Étape 4.1.6.1.2
Factorisez à partir de .
Étape 4.1.6.1.3
Factorisez à partir de .
Étape 4.1.6.1.4
Factorisez à partir de .
Étape 4.1.6.1.5
Factorisez à partir de .
Étape 4.1.6.2
Factorisez par regroupement.
Étape 4.1.6.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 4.1.6.2.1.1
Factorisez à partir de .
Étape 4.1.6.2.1.2
Réécrivez comme plus
Étape 4.1.6.2.1.3
Appliquez la propriété distributive.
Étape 4.1.6.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.1.6.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.1.6.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.1.6.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 4.1.7
Réécrivez comme .
Étape 4.1.7.1
Réécrivez comme .
Étape 4.1.7.2
Réécrivez comme .
Étape 4.1.7.3
Ajoutez des parenthèses.
Étape 4.1.8
Extrayez les termes de sous le radical.
Étape 4.1.9
Élevez à la puissance .
Étape 4.2
Multipliez par .
Étape 4.3
Simplifiez .
Étape 4.4
Remplacez le par .
Étape 4.5
Factorisez à partir de .
Étape 4.5.1
Factorisez à partir de .
Étape 4.5.2
Factorisez à partir de .
Étape 5
Étape 5.1
Simplifiez le numérateur.
Étape 5.1.1
Élevez à la puissance .
Étape 5.1.2
Multipliez par .
Étape 5.1.3
Appliquez la propriété distributive.
Étape 5.1.4
Simplifiez
Étape 5.1.4.1
Multipliez par .
Étape 5.1.4.2
Multipliez par .
Étape 5.1.4.3
Multipliez par .
Étape 5.1.5
Additionnez et .
Étape 5.1.6
Réécrivez en forme factorisée.
Étape 5.1.6.1
Factorisez à partir de .
Étape 5.1.6.1.1
Factorisez à partir de .
Étape 5.1.6.1.2
Factorisez à partir de .
Étape 5.1.6.1.3
Factorisez à partir de .
Étape 5.1.6.1.4
Factorisez à partir de .
Étape 5.1.6.1.5
Factorisez à partir de .
Étape 5.1.6.2
Factorisez par regroupement.
Étape 5.1.6.2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 5.1.6.2.1.1
Factorisez à partir de .
Étape 5.1.6.2.1.2
Réécrivez comme plus
Étape 5.1.6.2.1.3
Appliquez la propriété distributive.
Étape 5.1.6.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.1.6.2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 5.1.6.2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.1.6.2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 5.1.7
Réécrivez comme .
Étape 5.1.7.1
Réécrivez comme .
Étape 5.1.7.2
Réécrivez comme .
Étape 5.1.7.3
Ajoutez des parenthèses.
Étape 5.1.8
Extrayez les termes de sous le radical.
Étape 5.1.9
Élevez à la puissance .
Étape 5.2
Multipliez par .
Étape 5.3
Simplifiez .
Étape 5.4
Remplacez le par .
Étape 5.5
Factorisez à partir de .
Étape 5.5.1
Factorisez à partir de .
Étape 5.5.2
Factorisez à partir de .
Étape 5.5.3
Factorisez à partir de .
Étape 6
La réponse finale est la combinaison des deux solutions.
Étape 7
L’équation donnée ne peut pas être écrite comme , si bien que ne varie pas directement avec .
ne varie pas directement avec