Pré-algèbre Exemples

Trouver les bornes des zéros f(x)=(25000(x-14))/(x^2-9)
Étape 1
Vérifiez le coefficient directeur de la fonction. Ce nombre est le coefficient de l’expression avec le plus haut degré.
Plus grand degré :
Coefficient directeur :
Étape 2
The leading coefficient needs to be . If it is not, divide the expression by it to make it .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun.
Étape 2.2.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3
Créez une liste des coefficients de la fonction à l’exception du coefficient directeur de .
Étape 4
Il va y avoir deux options de bornes, et , dont la plus petite est la réponse. Pour calculer la première option de borne, déterminez la valeur absolue du plus grand coefficient parmi la liste des coefficients. Ajoutez ensuite .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Classez les termes par ordre croissant.
Étape 4.2
Additionnez et .
Étape 5
Pour calculer la deuxième option de borne, additionnez les valeurs absolues des coefficients depuis la liste des coefficients. Si la somme est supérieure à , utilisez ce nombre. Si ce n’est pas le cas, utilisez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Classez les termes par ordre croissant.
Étape 5.2
La valeur maximale est la plus grande valeur dans l’ensemble de données ordonné.
Étape 6
Les options de bornes sont les mêmes.
Borne :
Étape 7
Toutes les racines réelles sur sont comprises entre et .
et