Pré-algèbre Exemples

Écrire sous forme usuelle y=1.791(x)+32.64
Étape 1
La forme normalisée d’une équation linéaire est .
Étape 2
Transformez en une fraction.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Multipliez par pour retirer la décimale.
Étape 2.2
Multipliez par .
Étape 2.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Réécrivez comme .
Étape 2.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Réécrivez comme .
Étape 2.3.2.2
Annulez le facteur commun.
Étape 2.3.2.3
Réécrivez l’expression.
Étape 3
Transformez en une fraction.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez par pour retirer la décimale.
Étape 3.2
Multipliez par .
Étape 3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Factorisez à partir de .
Étape 3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Factorisez à partir de .
Étape 3.3.2.2
Annulez le facteur commun.
Étape 3.3.2.3
Réécrivez l’expression.
Étape 4
Déterminez le plus petit dénominateur commun de et .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 4.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 4.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 4.4
Les facteurs premiers pour sont .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
a des facteurs de et .
Étape 4.4.2
a des facteurs de et .
Étape 4.4.3
a des facteurs de et .
Étape 4.4.4
a des facteurs de et .
Étape 4.4.5
a des facteurs de et .
Étape 4.5
a des facteurs de et .
Étape 4.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 4.7
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.7.1
Multipliez par .
Étape 4.7.2
Multipliez par .
Étape 4.7.3
Multipliez par .
Étape 4.7.4
Multipliez par .
Étape 4.7.5
Multipliez par .
Étape 5
Multipliez les deux côtés par .
Étape 6
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Associez et .
Étape 6.1.2
Appliquez la propriété distributive.
Étape 6.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.3.1
Annulez le facteur commun.
Étape 6.1.3.2
Réécrivez l’expression.
Étape 6.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.4.1
Factorisez à partir de .
Étape 6.1.4.2
Annulez le facteur commun.
Étape 6.1.4.3
Réécrivez l’expression.
Étape 6.1.5
Multipliez par .
Étape 7
Réécrivez l’équation.
Étape 8
Déplacez tous les termes contenant des variables du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Soustrayez des deux côtés de l’équation.
Étape 8.2
Déplacez .
Étape 9
Soustrayez des deux côtés de l’équation.
Étape 10