Entrer un problème...
Pré-algèbre Exemples
Étape 1
Étape 1.1
Factorisez à l’aide de la méthode AC.
Étape 1.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.2
Factorisez à partir de .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Factorisez à partir de .
Étape 1.2.3
Factorisez à partir de .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.4
a des facteurs de et .
Étape 2.5
Multipliez par .
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Le facteur pour est lui-même.
se produit fois.
Étape 2.9
Le facteur pour est lui-même.
se produit fois.
Étape 2.10
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.11
Le plus petit multiple commun de certains nombres est le plus petit nombre dont les nombres sont des facteurs.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.2
Multipliez .
Étape 3.2.1.2.1
Associez et .
Étape 3.2.1.2.2
Multipliez par .
Étape 3.2.1.3
Annulez le facteur commun de .
Étape 3.2.1.3.1
Annulez le facteur commun.
Étape 3.2.1.3.2
Réécrivez l’expression.
Étape 3.2.1.4
Annulez le facteur commun de .
Étape 3.2.1.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.4.2
Factorisez à partir de .
Étape 3.2.1.4.3
Annulez le facteur commun.
Étape 3.2.1.4.4
Réécrivez l’expression.
Étape 3.2.1.5
Multipliez par .
Étape 3.2.1.6
Appliquez la propriété distributive.
Étape 3.2.1.7
Multipliez par .
Étape 3.2.2
Additionnez et .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.2
Annulez le facteur commun de .
Étape 3.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2
Réécrivez l’expression.
Étape 3.3.3
Annulez le facteur commun de .
Étape 3.3.3.1
Factorisez à partir de .
Étape 3.3.3.2
Annulez le facteur commun.
Étape 3.3.3.3
Réécrivez l’expression.
Étape 4
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 4.1.1
Soustrayez des deux côtés de l’équation.
Étape 4.1.2
Soustrayez de .
Étape 4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Soustrayez de .
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
Annulez le facteur commun de .
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :