Pré-algèbre Exemples

Resolva para c c^3xc=c^5
Étape 1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déplacez .
Étape 1.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Élevez à la puissance .
Étape 1.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 1.3
Additionnez et .
Étape 2
Soustrayez des deux côtés de l’équation.
Étape 3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Étape 3.2
Factorisez à partir de .
Étape 3.3
Factorisez à partir de .
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5.2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Réécrivez comme .
Étape 5.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.2.2.3
Plus ou moins est .
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Divisez chaque terme dans par .
Étape 6.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.2.2.2.2
Divisez par .
Étape 6.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 6.2.2.3.2
Divisez par .
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.