Entrer un problème...
Pré-algèbre Exemples
Étape 1
Réécrivez l’équation comme .
Étape 2
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.4
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 2.4.1
Multipliez par .
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Multipliez par .
Étape 2.4.4
Multipliez par .
Étape 2.5
Associez les numérateurs sur le dénominateur commun.
Étape 2.6
Soustrayez de .
Étape 2.7
Annulez le facteur commun à et .
Étape 2.7.1
Factorisez à partir de .
Étape 2.7.2
Annulez les facteurs communs.
Étape 2.7.2.1
Factorisez à partir de .
Étape 2.7.2.2
Annulez le facteur commun.
Étape 2.7.2.3
Réécrivez l’expression.
Étape 3
Étape 3.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 3.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 3.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.5
Les facteurs premiers pour sont .
Étape 3.5.1
a des facteurs de et .
Étape 3.5.2
a des facteurs de et .
Étape 3.6
Multipliez .
Étape 3.6.1
Multipliez par .
Étape 3.6.2
Multipliez par .
Étape 3.7
Le facteur pour est lui-même.
se produit fois.
Étape 3.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3.9
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 4
Étape 4.1
Multipliez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 4.2.2
Associez et .
Étape 4.2.3
Annulez le facteur commun de .
Étape 4.2.3.1
Annulez le facteur commun.
Étape 4.2.3.2
Réécrivez l’expression.
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Annulez le facteur commun de .
Étape 4.3.1.1
Factorisez à partir de .
Étape 4.3.1.2
Annulez le facteur commun.
Étape 4.3.1.3
Réécrivez l’expression.
Étape 5
Réécrivez l’équation comme .